首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 613 毫秒
1.
本文给出了1个新的测量大气臭氧垂直分布的逆转方法,该方法将臭氧层分为6层,各层的臭氧含量,前后两次用图解法由联立方程定量的解出。使用这个方法,我们对在北京观测的10条逆转曲线作了计算,并将这些计算结果作了讨论及初步的误差估计。  相似文献   

2.
本文探討了Gotz逆轉效应中,单色天頂散射光强I3112(?)的有效散射高度hE的上升过程。首先从理論上証明:hE并非沿高度連續的上升,而是跳跃上升的。然后用实际观測数据的計算,証实了理論結果。由此并指出,由于hE的跳跃,那么在应用逆轉效应,建立測定大气臭氧垂直分布方法时,如果将大气分层較多,那么可能在臭氧层中下部所得的結果,是不唯一的。基于上述結果,进一步研究了方法B,发現目前国际上通用的,由Ramanathan与Davo所給出的逆轉方法B的解是不唯的。这些解之間有着亘大的差异。因此以該方法計算出的各层臭氧含量,并不能肯定大气臭氧的垂直分布情况。  相似文献   

3.
大气急流、飞机颠簸、臭氧层顶等重要物理、化学现象均与对流层顶的位置、强度及其变动密切相关,因此在研究自由大气的气候和大气环流时,作为对流层与平流层过渡层的对流层顶是非常重要的,对流层顶研究已成为当今大气科学的研究热点之一。对近几十年来对流层顶研究领域的有关研究作了简要回顾,主要从对流层顶的分布特征、对流层顶要素变化以及对流层顶与臭氧的关系等几个方面进行综述。在此基础上,总结出对流层顶研究遇到的几个困难。  相似文献   

4.
利用1979~1992年卫星TOR对流层臭氧数据库资料,以及同期太阳辐照度数据序列,考察青藏高原对流层臭氧含量变化与太阳辐射周期变化之间的关系.分析表明,青藏高原对流层臭氧分布表现出与太阳辐照度相同的变化趋势,存在着明显的太阳周期变化特征.逐月线性回归分析表明,太阳辐照度增加导致青藏高原对流层臭氧增加的正效应.在太阳周期内,太阳辐射增加可使青藏高原对流层臭氧、平流层臭氧和臭氧总量分别增加1.31、4.97、6.628DU,或4.07%、2.04%、2.28%.该特征与赤道太平洋地区完全相反,分析产生差异的原因,至少应包括两方面因素:一是背景大气NOX和水汽含量的差异;二是青藏高原频繁发生的平流层-对流层大气物质交换和输送.  相似文献   

5.
副热带急流对中国南部地区对流层中上层臭氧浓度的影响程度及地理范围目前还研究较少,且缺乏综合使用常规气象资料及卫星资料来判识对流层中上层臭氧浓度增高的方法.本文利用NCEP再分析与最终分析资料、日本GMS-5地球静止卫星水汽云图资料,以2001年3月27~29日中国南部的临安、昆明、香港臭氧探测个例为基础,结合1996年3月29日香港与2001年4月13日临安对流层中上层高浓度臭氧分布个例对副热带急流对中国南部对流层中上层臭氧浓度的影响进行了详细分析,提出根据气象要素场判识春季中国南部对流层中上层臭氧浓度增高的充分条件为根据卫星水汽图像上的暗区、高空急流入口区的左侧辐合区、高空锋区、对流层中上层≥1 PVU的向下伸展的舌状高位涡区来综合判断.本文的分析结果表明,本文个例中对流层中上层高浓度臭氧来自平流层;香港对流层中上层低浓度臭氧来自热带海洋地区.不仅臭氧垂直廓线的多个极小与极大值表明臭氧垂直分布的多尺度变化特征,而且对流层中上层PV分布以及卫星水汽图像分析也表明大气中的多尺度运动对臭氧垂直分布特征有显著影响.本文的结果表明与副热带高空急流相联系的平流层空气侵入不仅发生在中国大陆的较高纬度地区,较低纬度的昆明与香港地区也有平流层空气侵入导致对流层中上层臭氧浓度升高.  相似文献   

6.
珠江三角洲大气气溶胶对地面臭氧变化的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
研究表明在珠三角目前的污染状况下,至少一半以上的紫外辐射被大气气溶胶衰减,如此大幅度的紫外辐射衰减对城市生态系统和物种化学循环,尤其是臭氧光化学反应过程有重大的影响.利用地面观测的臭氧、紫外辐射、气溶胶辐射特性参数以及辐射和化学模式定量评估了大气气溶胶对地面臭氧影响的显著性.实例分析表明,珠三角大气气溶胶和紫外辐射与臭氧之间的相关性显著,气溶胶光学厚度(AOD)与地面PM10的浓度相关性高达0.98,AOD与相应时次的紫外辐射和臭氧的反相关性明显,相关系数可达-0.9.分析表明气溶胶污染通过衰减紫外辐射可显著降低臭氧的产率,AOD为0.6时臭氧的午间峰值区消失,AOD至1.2时午间峰值区呈下降趋势,造成午间臭氧的生成产率明显降低.目前干季(10,11,12和1月)广州的气溶胶光学厚度AOD550 nm≥0.6(AOD340 nm≥1.0)的出现概率为47%(55%),珠三角在干季出现臭氧极大值的机会少与严重的气溶胶污染抑制臭氧峰值的出现应有密切的关系.分析表明应用辐射化学模式计算气溶胶的辐射效应时对单散射因子(SSA)十分敏感,表明应用辐射化学模式计算臭氧的产率时应慎重选取合理的单散射因子值.  相似文献   

7.
段雯娟 《地球》2013,(12):74-77
随着世界工业经济的发展、人口的剧增、人类欲望的无限上升和生产生活方式的无节制,二氧化碳排放量愈来愈大,地球臭氧层正遭受前所未有的危机。气温升高、冰川融化、  相似文献   

8.
2001年3月7日与8日在香港与昆明用电化学臭氧探空仪探测到了对流层低层异常的高浓度臭氧分布. 本文使用NCEP(美国环境预报中心)分析资料、中尺度数值模式MM5模拟的大气环流数据、卫星观测的东南亚地区的生物体燃烧状况、气溶胶指数等资料,分析了这段时间的天气形势、大气环流、空气的后向轨迹以及生物体燃烧产生的烟尘的轨迹,结果发现高浓度的臭氧空气来源于有生物体燃烧的中南半岛地区. 燃烧烟尘的轨迹还表明生物体燃烧地区的下风方的对流层低层臭氧的分布会受到上游地区生物体燃烧产物的影响.  相似文献   

9.
一、引言由研究日食时臭氧层的变化可以获得引起臭氧层生成及破坏的各种过程进行速度的資料.但在黄昏时研究这些过程則不甚适合. 遺憾的是过去使用光譜学方法研究日食时臭氧层情况的工作并不多. 如在1936年6月19日日食时,J.Kawabata在R.Sekiguti領导下曾用石英光譜仪得到了在第二次接触(食既)时臭氧的明显增加,可是很明显,有云的天气使他們不能够研究进一步的变化.B.斯文生(Svensson)在1954年6月30日日食时借助道勃生(Dobson)光譜光度計亦得到了在3100及3300埃两波长处光強比的改变,这与一般在食甚时臭氧层增加的理論相符.  相似文献   

10.
大气臭氧层的垂直分布及其变化的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为了进一步认识低纬度地区大气臭氧垂直分布及其变化的规律,本文采用逆转方法〈C〉计算了昆明地区冬春季大气臭氧的垂直分布.结果表明:臭氧垂直分布出现两种类型,一种是只在平流层中有一主极大值层;另一种是除主极大值层外,同时在对流层中还存在次极大值层.主极大值层的臭氧浓度变化相对较稳定,次极大值层主要受大气环流影响很不稳定,且随季节变化与位势高度、垂直速度等要素的关系存在着明显差异.此外,我们还分析了春季臭氧垂直分布的日际变化.  相似文献   

11.
南极大气臭氧和温度垂直结构及其季节变化的研究   总被引:1,自引:0,他引:1  
利用南极中山站2008年2月至2009年2月臭氧和温度探空等资料,对中山站上空大气臭氧和温度的垂直结构及季节变化特征进行了研究.结果表明,在中山站上空热对流层顶和臭氧对流层顶的高度相近,年平均高度分别为7.9和7.4km.对流层顶的气压和温度都存在位相相反一波型季节变化.春季和冬季对流层顶的温度转折没有夏季和秋季明显,而依据臭氧变化恰能更好地确定对流层顶高度.在对流层臭氧垂直分布的季节变化不显著;而平流层却十分明显.春季下平流层臭氧严重耗损,14km处的臭氧最小分压仅为1.57MPa,最大分压出现在上平流层,其他季节下平流层臭氧随高度增加而升高.春季下平流层臭氧的严重损耗,与极夜过后低温条件和平流层冰晶云表面消耗臭氧的光化学过程有密切关系.大气臭氧和温度的垂直结构及季节变化特征,对春季南极臭氧洞的形成和发展具有重要意义.  相似文献   

12.
本文利用2013年6月至2015年10月北京南苑观象台两年多午后臭氧探空资料,初步分析了北京城区大气混合层内臭氧浓度的垂直分布规律以及典型天气条件下大气边界层臭氧的变化特征.主要结果有:(1)季节平均而言,地表至对流层中部(8 km)的臭氧浓度在夏季最高,冬季最低,相差50~130 μg·m-3,最大差异在边界层.总体而言,对流层臭氧浓度随高度有比较缓慢的增加,但是边界层内臭氧浓度的垂直结构随季节有比较大的差异:夏季混合层中部存在一个臭氧浓度极大值,这与夏季比较强的光化学生成臭氧有关;而在冬季地面臭氧浓度很低,平均值小于40 μg·m-3,说明冬季地面是臭氧很强的汇.(2)臭氧浓度季节内变率的季节差异也十分明显,夏季最大、冬季最小.季节内变率在从边界层向自由对流层过渡区域最小(夏季为24 μg·m-3,冬季仅为10 μg·m-3),在边界层内变率较大,夏季可达64 μg·m-3(冬季为30 μg·m-3),这也说明边界层化学过程明显影响臭氧浓度的变化.(3)我们从所有白天样本中严格筛选了部分混合层样本,并把臭氧浓度在由混合层向自由大气过渡时的垂直分布分成了三类,即臭氧浓度随高度增大(Ⅰ型)、减小(Ⅱ型)以及基本稳定不变(Ⅲ型);臭氧垂直结构类型有明显的季节特征,夏季主要是Ⅱ型,而冬季则以Ⅰ型为主.(4)此外,我们还针对一些典型天气过程(强风、静稳雾天和PM2.5污染)边界层内臭氧的变化特征进行了分析,结果表明:强风切变产生的机械对流引起的充分混合,有利于高层臭氧向低层输送,使得混合层内臭氧浓度的垂直梯度明显减小,同时混合层高度较高,达3 km以上;在高湿度静稳天气控制下,大气混合层较稳定,对北京上空污染物的垂直扩散十分不利:颗粒物浓度升高,削弱到达近地层的太阳辐射,从而降低臭氧的生成效率,混合层内臭氧浓度与混合层厚度都处于较低水平.  相似文献   

13.
再談关于逆轉方法<B>解的不唯一性   总被引:1,自引:0,他引:1       下载免费PDF全文
在大气臭氧垂直分布的研究中,逆轉方法B在最近几年有着比較广泛的应用。不久前我們曾証明,方法B的解是不唯一的,李鈞等同志对我們的工作提了一些意見,我們觉得这很好。  相似文献   

14.
中国地球物理学会地磁与高空物理研究进展与方向座谈会于1986年12月17日—20日在北京举行,参加会议的有全国有关的20个单位44名代表,学会副理事长朱岗崑、常务理事肖佐主持了会议。 地磁与高空物理是地球物理学的一个重要分支。目前,我国已形成了一支观测、分析和理论队伍,开展了太阳风、行星际、磁层、电离层、中层大气、地球基本磁场、地球电磁感应、古地磁、震磁关系等多方面的工作,并取得了大量成果,在国内研究和国际合作研究中作出了贡献。这次会议上的三十多篇论  相似文献   

15.
本文基于1979—2014年臭氧总量的卫星遥感数据,利用多元线性回归模型对臭氧总量数据序列进行模拟计算,考察了北太平洋上空臭氧总量长期变化趋势及其影响因素的作用.结果表明,北太平洋地区大气臭氧总量长期变化呈现减少趋势,但是减少速率随季节和纬度带表现出差异性,在各纬度带臭氧峰值季节臭氧下降趋势最为显著.在0°—15°N地区臭氧高值出现在夏秋季节并在8月达到峰值,峰值月份臭氧年均下降率约为0.2DU/a;15°—30°N亚热带地区臭氧高值出现在春夏季并在5月达到峰值,峰值月份臭氧年均下降速率约为0.22DU/a;而在30°—45°N中纬度地区臭氧高值出现在冬春季并在2月达到峰值,峰值月份臭氧年均下降率0.75DU/a.在臭氧分布年平均态基础上,影响臭氧总量分布变化的因素主要有臭氧损耗物质(EESC)、太阳辐射周期(Solar)、准两年振荡(QBO)和厄尔尼诺-南方涛动(ENSO)等.其中,EESC导致臭氧损耗效应随着纬度升高而增大,在从低到高的三个纬度带损耗最大值分别为11DU、16DU和66DU;Solar增强导致臭氧增加,在三个纬度带的增加效应最大值分别为16DU、17DU和19DU;QBO@10hPa和QBO@30hPa对臭氧影响幅度基本在±10DU内波动,只有QBO@10hPa对30°—45°N区域的影响作用达到14DU,值得注意的是QBO影响作用随着纬度变化存在相位差异,在0°—15°N区域臭氧变化与QBO呈现相同相位,而在15°—30°N和30°—45°N区域臭氧变化与QBO呈现相反相位;ENSO对各个纬度带臭氧影响幅度也在±10DU内,ENSO影响作用在不同纬度带也存在相位差异,臭氧总量变化在0°—15°N、15°—30°N区域与ENSO相位相反,在30°—45°N区域与ENSO相位一致.  相似文献   

16.
本文根据全球高空10 hPa位势高度距平场EOF分析得知,存在于地面层大气中的南北向涛动现象~北极高空大气涛动和南极涛动,在高空大气中更为清楚,而且这种高空南北向涛动现象是波及全球的;存在于地面层大气中著名的纬向涛动现象~南方涛动(Southern Oscillation,SO)和北方涛动(North Oscillation,NO),在高空大气中则变得不甚清楚.表征北极高空大气涛动的第一模态与表征南极涛动的第二模态的方差贡献率分别为41.47%和27.04%,二者累积方差贡献率达到68.51%,构成了平流层高空大气年代际振荡的主要形式;另外还存在两半球对称性中高纬度南极涛动模态和两半球不对称性中高纬度南极涛动模态,是高空大气中出现概率比较小的振荡形式.谱分析表明,无论北极高空大气涛动模态、南极涛动模态还是中高纬度纬向涛动模态,都存在与太阳磁场磁性指数相一致的22年准周期变化以及与太阳黑子相对数相一致的11年准周期变化;采用逐次滤波法的滤波分析和对比分析表明,高空大气涛动现象的重要影响因子乃太阳活动,其中太阳磁场的大幅度涨落及其磁性变化是主要因素,太阳黑子相对数的变化为次要因素.  相似文献   

17.
FY-3气象卫星上搭载的紫外臭氧总量探测仪TOU是我国自主开发研制的首台用于全球臭氧总量定量测量的探测仪,自发射以来已成功在轨运行近两年.由于TOU发射前辐亮度定标存在偏差,为了得到高精度的产品,TOU必须进行在轨定标.本文介绍了基于辐射传输模式计算对TOU辐亮度进行在轨道定标的方法,定标过程中用于模拟辐亮度计算的臭氧总量由与TOU观测时刻相近的国外臭氧总量探测仪器MetOp/GOME-2提供.文章将在轨定标后TOU的反演结果与AURA/OMI以及地基的产品进行比较,结果表明,用辐射传输模式对TOU辐亮度进行在轨定标的方法是可行的,反演结果能够真实地反映臭氧的时空分布特性,在全球部分地基观测站所处的位置上对TOU, OMI以及地基的臭氧总量进行比较的结果表明,TOU与OMI的相对偏差均方根约为2.52%,TOU与地基以及OMI与地基观测结果之间的相对偏差均方根分别为4.45%和3.89%.  相似文献   

18.
地球自转带动非对等分布的正负电荷绕地轴做圆周运动产生相对于地轴静止的地球主磁场并形成地球电场,同时,由地球自转所带动的带电粒子受到地球电场和地球主磁场的作用.为探索地球气候变化的自然原因,创建相对于地轴静止的地磁参考系,应用经典物理学理论和方法,分析研究大气中带电粒子在地球电场和地球磁场中的运动规律.结果表明:气候带及季节性节律均为大气受到电磁力、热力及地球引力的共同作用而形成;地球电场与地球磁场变化使地球系统带电粒子受到的电磁力发生变化,对气候的影响是全方位的;大气具有一定的自动调节功能,当代气候呈极端化趋势与大气中地球主磁场极弱密切相关.本研究结论概括为四个方面:(1)地球电场使大气中带正、负电荷的粒子呈交错分层分布态势且地球南、北两极及赤道附近空间的电荷密度高.(2)地球主磁场使大气中带正、负电荷的粒子在垂直地球主磁场平面内作方向相反的圆周运动并带动荷电大气回旋形成气旋和反气旋环流.(3)荷电大气回旋规律为:在线速度大小不变条件下回旋半径跟总磁场磁感应强度与大气荷质比的乘积成反比;回旋角速度大小等于总磁场磁感应强度与大气荷质比的乘积,与线速度无关.荷电大气相对于地面的速度在各象限分布不对称.(4)地球电场、地球磁场、荷电大气的运动及其产生的感生电场和感生磁场,遵循麦克斯韦方程组和牛顿运动定律等经典物理学规律,是一个相互纠缠的整体,具有超越介质的遥相关和遥响应机制,能够使大气中的极性分子物质发生电离,地震前地电场和地磁场的异常变化可以在大气中形成地震云.感生电场和感生磁场使回旋的荷电大气作经、纬方向的耦合,形成经、纬方向的偶极子型环流和纬向环状型环流,使荷电大气的运动与地形地势及下垫面的电磁特性紧密相关.荷电大气的回旋具有正反馈机制,随着荷质比的增大能够形成台风、龙卷风等旋风.大气中尺度不同的环流系统,从东(西)风带、南(北)半球环状模,到热带气旋等,都是地球电场和地球磁场驱动的荷电大气的运动所致,准定常行星波是大尺度环流系统感生电磁场传播的结果.  相似文献   

19.
根据Aura卫星微波临边探测(MLS)2.2,3.3版水汽和臭氧廓线,采用线性内插方法,将夏季在青藏高原(西藏的那曲和拉萨)及其周边地区(云南腾冲)通过冷冻霜点仪(CFH)和电化学反应池型(ECC)探空仪分别测得的水汽和臭氧数据插值到与卫星产品规定的气压高度进行比较分析,以检验MLS水汽和臭氧廓线产品.结果表明:MLS 2.2和3.3版水汽相对误差在100 h Pa的对流层顶附近分别为(9.8±46.0)%(n=18),(23.0±45.8)%(n=17);在小于并包含82.5h Pa在内的下平流层则分别为(-2.2±15.7)%(n=74),(0.3±14.9)%(n=75);而在对流层316~121h Pa高度则分别为(21.5±90.6)%(n=104),(6.0±83.4)%(n=99).相应MLS 2.2,3.3版臭氧的误差分别为:(-3.5±54.4)%(n=27),(-8.7±41.6)%(n=38)(100 h Pa);(-11.7±16.3)%(n=135),(15.6±24.2)%(n=305)(下平流层);(18.0±79.1)%(n=47),(34.2±76.6)%(n=160)(对流层上层).MLS水汽和臭氧的误差垂直分布在对流层上层-平流层低层振荡和离散分布明显,部分误差可能由于此高度层水汽和臭氧浓度梯度大和比较用线性插值探空数据引起."臭氧低谷"期间,拉萨地区70 h Pa高度以下MLS卫星臭氧浓度误差明显增加;腾冲、那曲与拉萨三地的MLS臭氧误差的垂直分布特征较一致.卫星产品与探空测值的初步关系表明,MLS廓线的灵敏度与水汽和臭氧在大气中垂直分布有密切联系,3.3版水汽产品的灵敏度在82.5 h Pa以上高度略有提高,臭氧产品灵敏度没有明显变化.文中还讨论了导致MLS水汽和臭氧廓线产品误差的可能因素.  相似文献   

20.
上海地区臭氧周末效应研究   总被引:22,自引:0,他引:22  
分析了2006年上海5个臭氧监测站(徐家汇、崇明、宝山、浦东和金山)周末与工作日臭氧浓度的变化规律,发现上海徐家汇与国外许多城市中心一样,存在周末臭氧浓度比工作日高,而臭氧前体物NO,NO2,CO和VOCs的浓度却是周末要比工作日低的“臭氧周末效应”.一方面,上海徐汇区NO2/NO在周末比工作日要高25.61%,NO排放的减少是造成上海臭氧周末效应可能的化学原因;另一方面,上海徐家汇由于周末NOx(NO+NO2)比工作日在清晨(05:00-09:00)平均减少近12.13%,使清晨NO抑制臭氧生成的持续时间比工作日少近半个小时,周末臭氧积累持续时间更长,臭氧平均生成速率更大.臭氧的产生率是关于环境中VOCs与NOx混合比率的函数.上海徐家汇VOCs与NOx比率周末为4.55,工作日为4.37,位于VOC敏感区.由于周末NOx和VOCs减少,VOCs/NOx比率增加,使臭氧从73mL/L增加到80nL/L,这与上海徐家汇的“周末效应”基本一致.利用MICAPS云量资料做进一步分析.周末、工作日臭氧值都随云量增加而降低,并且明显发现徐家汇臭氧“周末效应”随云量增加而逐渐减弱.云量的增加最终结果使臭氧“周末效应”几乎消失,说明徐家汇臭氧“周末效应”是由于臭氧光化学生成引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号