首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
南北地震带南段应力场特征及其与板块运动的关系   总被引:10,自引:0,他引:10       下载免费PDF全文
根据从1933年到1991年的134次中、强震的震源机制结果,对南北地震带南段的区域应力场特征进行了详细地分析.结果表明,南北地震带南段是一条浅源、走滑地震带,在它的东部和西部地区,震源机制结果的P轴和T轴呈现系统的、一致的分布.在西部地区,P轴和T轴分别位于北东-南西和北西-南东方向;在东部地区,P轴和T轴分别位于北西-南东和北东-南西方向.从整体来看,P轴的方位在空间组成一个倒V字形.东部和西部地区的边界与青藏高原和扬子块体之间的边界是一致的.大量的震源机制结果表明,从喜马拉雅碰撞带到南北地震带南段西部,从台湾东海岸碰撞带到南北地震带南段东部,P轴的方位分别呈现大体一致的分布.这说明,印度-澳大利亚板块与欧亚板块之间的相对运动所产生的构造力从喜马拉雅碰撞带一直传到南北地震带南段西部,同时,菲律宾海板块与欧亚板块之间相对运动所产生的构造力从台湾东海岸一直传到南北地震带南段东部,并分别控制了那里的应力场.   相似文献   

2.
腾冲火山区及周围地区震源机制与构造应力场分布特征   总被引:2,自引:0,他引:2  
对腾冲火山区及周围地区强震震源深度和震源机制空间分布及区域现代构造应力场特征进行了研究。由我国西南地区直到缅甸中深源地震带的区域构造应力场空间分布格局,充分显示出我国西南地区在现代构造运动过程中,受到以印度板块对亚欧板块碰撞挤压作用为主要动力源,在东部同时受到太平洋板块和菲律宾海板块远距离作用影响的总体特征。腾冲火山区主要受到印度板块在缅甸中深源地震带产生的侧面挤压剪切的直接作用。腾冲火山区所属的腾冲龙陵地震带是西南地区区域构造应力场分区的一条重要边界。腾冲火山区主要受到北东———北东东向的区域压应力场作用,同时也可能受到东侧毗邻应力场分区南南东———南东向压应力场的影响。  相似文献   

3.
腾冲火山区及周围地震源机制与构造应力场分布特征   总被引:2,自引:2,他引:0  
王绍晋  龙晓帆 《地震研究》1998,21(4):349-357
对腾冲火山区及周围地区强震震源深度和震源机制空间分布及区域现代构造应力场特征进行了研究。由我国西南地区直到缅甸中深源地震带的区域构造应力场空间分布格局,充分显示出我国西南地区在现代构造运动过程中,受到以印度板夫对亚欧板块碰撞挤压作用为主要动力源,在东部同时受到太平洋板块和菲律宾海板块远距离作用影响的总体特征。腾冲火山区主要受到印度板块在缅甸中深源地震带产生的侧面挤压剪切的直接作用。腾冲火山区所属的  相似文献   

4.
泉州—汕头地震带与菲律宾板块   总被引:1,自引:0,他引:1  
新生代以来,我国区域构造应力场的形成和发展,决定于印度板块和太平洋板块的共同作用。在东南沿海地区则以菲律宾板块的作用为主。我国著名的强震区—台湾地震带和华南的强震带—泉州—汕头地震带(简称泉汕带),  相似文献   

5.
本文使用地震资料研究了青藏高原与华南块体边界南北地震带南段的地震类型及其构造运动的区域特征.发现金沙江上游东侧与鲜水河南侧之间的正断层型地震活动区,存在南北向扩张的地震构造运动;金沙江下游东侧正断层型地震活动区存在东西向扩张的地震构造运动.在龙门山断裂及其西北相邻地震带是一个逆断层型地震活动区.其他地区多为走滑型地震.南北地震带南段东西两区域地震应力场主压应力P轴方向呈现区域性差异.南北地震带南段西部区域的应力场主压应力P轴的方向大部都沿北东-南西方向分布,这与青藏高原地区的主压应力P轴的方向分布一致.南北地震带南段东部区域的主压应力P轴的方向大部都沿北西-南东方向分布,与华南地区的应力场大致相同.南北地震带南段东、西两区主压应力P轴方向所呈现出的不连续性分布特征,表明了南北地震带南段东部区域的地震孕力场可能是另有一个北西-南东方向分布的孕震力源的应力场.它可能与台湾纵谷断层地区菲律宾海板块北西向挤压的构造应力场有关.  相似文献   

6.
甘东南地区位于青藏块体东缘,地处南北地震带中段,其边界和内部发育多组活动断裂。在北东-北东东向区域应力场作用下,南北边界断裂发生左旋走滑运动,西部边界断裂发生右旋走滑活动,导致整个地块向南东方向挤出,在东南部遇到龙门山中央隆起带,造成东部边界地区地壳的缩短和山体的隆升,是青藏高原北部区域构造活动强烈的地区之一,也是中强震和强震发生的主要场所。  相似文献   

7.
中国大陆地壳的应变应力场研究   总被引:5,自引:0,他引:5  
根据全国GPS网1994年和1996年两期测量结果,研究了中国大陆地壳现阶段的水平形变应力场。结果显示,西部青藏块体与新疆块体主压应力场为近南北至北 北东向,而南北地震带以东、长江以及北地区为北东东至近东西向,华南块体上为北 北西至北西向,与滑线场理论模型基本吻合。反映出中国大陆地壳变形的压应力主要来自印度板块与欧亚板块的俯冲碰撞。而太平洋板块与菲律宾板块对欧亚板块的作用力以及地幔向上的作用力总体  相似文献   

8.
中国大陆地壳应力场与构造运动区域特征研究   总被引:41,自引:16,他引:25       下载免费PDF全文
系统研究了1918~2006年间中国大陆及其周缘发生的3115个M4.6以上中、强地震的震源机制解,得到中国大陆地壳区域应力场的压应力轴和张应力轴空间分布的统计结果.探讨了大陆应力场的结构,以及周围板块运动对中国大陆应力场影响作用范围及其界线.结果表明,中国东部的华北地区受到太平洋板块向欧亚板块俯冲挤压的同时,又受到从贝加尔湖经过大华北直至琉球海沟的广阔范围内存在的方位为170°引张应力场的控制.华北地区大地震的震源机制解反映出,该区地震发生为NEE向挤压应力和NNW向张应力的共同作用结果.印度洋板块向欧亚板块的碰撞挤压运动所产生的强烈的挤压应力,控制了喜马拉雅、青藏高原、乃至延伸到天山及其以北的广大地区.在青藏高原周缘地区和中国西部的大范围内,压应力P轴水平分量位于20°~40°,形成了近北东方向的挤压应力场,大量逆断层型强震集中发生在青藏高原的南、北和西部周缘地区以及天山等地区. 本文结果表明,正断层型地震集中发生在青藏高原中部高海拔的地区.证明了青藏高原周缘区域发生南北向强烈挤压短缩的同时,中部高海拔地区存在着明显的近东西向的扩张运动.根据本文最新结果,得到了华北、华南块体之间地壳区域应力场的控制边界线,发现该分界线与大地构造、岩石圈板块构造图等有较大差异,特别是在大别及其以东地区, 该分界线向东南偏转,在沿海的温州附近转向东,最终穿过东海直至琉球海沟.台湾纵谷断层是菲律宾海板块与欧亚板块之间碰撞挤压边界,来自北西西向运动的菲律宾海板块构造应力控制了从台湾纵谷、华南块体,直到中国南北地震带南段东部地域的应力场. 地震震源机制结果还表明,南北地震带南段西侧其P轴大约为NNE方向,与青藏高原的P轴方位一致.南北地震带南段东侧其P轴大约为NWW方向,与华南块体的P轴方位一致.因此,将中〖JP2〗国大陆分成东、西两部分的南北地震带南段是印度洋板块与菲律宾海板块在中国大陆内部影响控制范围的分界线.  相似文献   

9.
南北地震带区域构造应力场反演   总被引:1,自引:0,他引:1  
利用区域应力张量阻尼方法,使用南北地震带及其邻近区域2009年1月—2017年8月466次ML≥3.5地震的震源机制解,及1976年1月—2017年8月GCMT公布的259次M≥4.5地震的震源机制解,反演得到研究区1.0°×1.0°网格大小区域的构造应力场。应力场空间分布特征显示,南北地震带作为青藏高原的东边界,由于所处动力环境复杂,其内部最大主应力方向具有明显的空间差异性。这种差异主要表现为:南北地震带北段最大主应力方向为NE向;南北地震带中段及周边除龙门山断裂带NE段最大主应力为NW-NNW向外,其它地段最大主应力近EW向;南北地震带中南段最大主应力方向逐渐由近EW向到NW或NE向,再到近NS向。整体而言,南北地震带及邻近区域最大主应力方向由北到南发生了顺时针旋转。川滇菱形块体内部最大主应力方向为NNW向,应力方向转换带与块体边界基本一致,其东边界以东最大主应力方向为NW向,西边界以西为NNE向。从区域构造应力场的角度分析,难以将“南北地震带”作为一个统一的地震带应用于中长期地震预测的研究与实践中。   相似文献   

10.
基于国际地震中心(ISC)提供的1970年1月~2016年12月期间的地震震源机制解,对鄂霍次克微板块东部俯冲带地区进行了应力张量反演,得到了日本海沟、千岛海沟和勘察加海沟3个俯冲带区域的构造应力场特征。研究结果显示:①海沟地区浅部区域(h100km)的水平主压应力轴与西北太平洋板块的俯冲方位一致,与海沟走向近似垂直,其洋壳一侧以拉张型应力状态为主,而陆壳一侧则以挤压型应力为主,且在弧后区域均存在拉张的应力状态;80~200km深度范围区域表现出双地震带"Ⅰ"型构造应力场特征。②日本海沟带由于俯冲角相对较小(相比于千岛海沟和勘察加海沟),水平方向沿NWW向延伸更远,大洋板块与上覆板块之间耦合更加强烈,逆冲型地震发生数量最多。③对于深部区域(h300km),千岛地区应力场表现出非均匀性特征,可能是由地幔阻力导致的;而勘察加地区应力场表现出拉张型,可能是因为俯冲板片的拉伸拖曳作用更强。  相似文献   

11.
南北地震带强震迁移特征及其与南亚地震带的联系   总被引:7,自引:0,他引:7  
南北地震带1500年以来7级以上强震迁移显示出3种方式:由北往南大致等时距的迁移、由南往北多样式的迁移和一个时段内全带范围内的成组强震群发活动。从以往100年的强震活动分析,南北地震带的活动还与从缅甸至印尼苏门答腊的南亚地震带强震活动相关联,前者的强震往往滞后于后者几月至数年发生。因此,2004年12月26日苏门答腊岛西面海里发生8·7级大地震后南北地震带发生强震的可能性不能忽视。南北地震带上述多种强震迁移活动特征既与印度板块向NNE的碰撞、俯冲过程有关,也与青藏高原与其东北缘稳定、坚硬的鄂尔多斯和阿拉善块体的相互作用有关  相似文献   

12.
南北地震带震源机制解与构造应力场特征   总被引:23,自引:7,他引:16       下载免费PDF全文
南北地震带作为中国大陆地应力场一级分区的边界,其构造应力场的研究对理解大陆强震机理、构造变形和地震应力的相互作用具有重要意义.本文收集南北地震带1970—2014年的震源机制解819条,按照全球应力图的分类标准对震源机制解进行分类,发现其空间分布特征与地质构造活动性质比较吻合.P轴水平投影指示了活动块体的运动方向,T轴水平投影在川滇块体及邻近地区空间差异特征最为突出,存在顺时针旋转的趋势.南北地震带的最大水平主应力方向具有明显的分区特征,北段为NE向走滑类型的应力状态,中段为NEE—EW—NWW向的逆冲类型,南段为SE—SSE—NS—NNE向走滑和正断类型,在川滇块体的北部和西边界应力状态为EW—SE—SSE的正断层类型,表明来自印度板块的NNE或NE向的水平挤压应力和青藏高原物质东向滑移沿大型走滑断裂带向SE向平移的复合作用控制了南北地震带的岩石圈应力场.川滇块体西边界正断层类型应力状态范围与高分辨率地震学观测得到的中下地壳低速带范围基本吻合,青藏高原向东扩张的塑性物质流与横向边界(丽江—小金河断裂带)的弱化易于应变能的释放,在局部地区使NS向拉张的正断层向EW向拉张正断层转变.反演得到的应力状态基本上与各种类型地震的破裂方式比较吻合,也进一步验证反演结果的可靠性,可为地球动力学过程的模拟和活动断层滑动性质的厘定提供参考.  相似文献   

13.
本文应用A.G.Ivakhnenko提出的数据处理的分组方法的基本思想,以生物有机体演化的方式,给出了一种自动选择模型的最佳形式和参数,构造高阶自回归模型的方法,并用此方法对南北地震带年最高震级序列做了建模和预测检验,效果较好。利用上述方法,本文还对南北地震带未来5年最高震级作了预测。  相似文献   

14.
本文应用A.G.Lvakhnenko提出的数据处理的分组方法的基本思想,以生物有机体演化的方法,给出了一种自动选择模型的最佳形式和参数,构造高阶自回归模型的方法,并用此方法对南北地震带年最高震级序列做了建模和预测,效果较好。利用上述方法,本文还对南北地震带未来5年最高震级作了预报。  相似文献   

15.
华南地震区地震带划分的新研究   总被引:3,自引:1,他引:2  
任镇寰 《华南地震》1998,18(2):10-15
对华南地区地震带的划分提出了一个新方案。认为北东东向断裂是控制华南地震区地震活动的主要断裂,同时东部有北西向巴士系裂交汇,迭加。  相似文献   

16.
李强 《地震》2001,21(3):39-45
南北地震带是中国大陆的一条主要活动地震带, 20世纪以来有很多大地震集中发生在这条地震带上。为了进一步探讨南北地震带地震活动强度变化的规律并对其进行中期预测,在研究了南北地震带逐年最大地震强度演化特征及其机理的基础上,建立了南北地震带地震强度序列变化的一种模式,建模中采用了人工神经网络技术,并提出了一种简易实用的能够获得较隹预测效果的确定神经网络输入窗口大小的方法。结果表明: 南北地震带的地震活动具有强弱分期轮回的特征; 用人工神经网络建模的预测结果与实际资料的对比检验中误差较小,因而该模型可作为南北地震带地震活动强度变化的预测模型。  相似文献   

17.
崔子健  陈章立  王勤彩  李君 《地震》2019,39(1):1-10
基于CAP方法, 使用地震波形资料, 计算得到了2009年1月~2017年8月期间南北地震带及周边区域466个3.5级以上地震震源机制解。 在补充收集1976年1月~2017年8月GCMT公布的259个4.5级以上地震震源机制解的基础上, 分析了南北地震带地震震源机制解和应力特征。 震源机制空间分布显示, 不同断裂带、 块体间表现出不同的震源机制空间分布特征, 该特征与南北地震带不同段落活动构造性质基本吻合。 作为青藏高原东边界的南北地震带, 由于动力环境复杂, 其内部P轴方向具有明显的差异性。 这种差异主要表现为: 南北地震带北段P轴呈NE向分布; 龙门山断裂带及周边除NE段P轴取向为NW—NNW向外, 其他地段P轴近EW向; 川滇菱形块体内部P轴呈NNW向, 而其西边界以西呈NNE向, 东边界以东呈NW向, 应力方向转换带的与川滇菱形块体边界基本一致。 整体而言, 南北地震带及近邻P轴方向由北到南发生了顺时针转动。  相似文献   

18.
Migration of strong earthquakes (M≥ 7.0) along the North-South Seismic Belt of China since 1500 AD shows three patterns: Approximately equal time and distance interval migration from N to S, varied patterns of migration from S to N and grouped strong earthquake activity in a certain period over the entire seismic belt. Analysis of strong earthquakes in the past hundred years shows that the seismicity on the North-South Seismic Belt is also associated with strong earthquake activities on the South Asia Seismic Belt which extends from Myanmar to Sumatra, Indonesia. Strong earthquakes on the former belt often lag several months or years behind the quakes occurring on the later belt. So, after the occurrence of the December 26, 2004 Ms8.7 great earthquake off the western coast of Sumatra, Indonesia, the possibility of occurrence of strong earthquakes on the North-South Seismic Belt of China cannot be ignored. The abovementioned migration characteristics of strong earthquakes are related to the northeastward collision and subduction of the India Plate as well as the interaction between the Qinghai-Xizang (Tibet) Plateau and the stable and hard Ordos and Alashan Massifs at its northeastern margin.  相似文献   

19.
Tectonic activity is intense and destructive earthquakes occur frequently in the northern section of the North-South Seismic Belt(NSSB). After the May 12, 2008 Wenchuan earthquake, the North-South Seismic Belt enters a new period of high seismicity. On July 22, 2013, the Minxian-Zhangxian earthquake occurred, which broke the 10-years seismic quiescence of magnitude 6 of the area, indicating an increasing trend of strong earthquakes in the region. Earthquake is the product of crustal movement. Understanding the dynamics of the process of crustal movement may provide basis for earthquake prediction. GPS measurement can provide high-precision, large-scale, quasi-real-time quantitative crustal movement data, that allows us to explore the evolution of crustal movement and its relationship with earthquake, thus providing the basis for determining the seismic situation. Since 2009, the density of mobile GPS measurement stations has significantly improved in the Chinese mainland, and moreover, the Wenchuan earthquake has brought about adjustment of the regional crustal deformation regime. So the introduction of the latest repeat GPS data is important for understanding the features of crustal movement in the northern section of the North-South Seismic Belt. In this paper, we obtained the GPS velocity field, fault profile and baseline time series and analyzed the dynamics of recent crustal movement in the northern section of the North-South Seismic Belt using the 1999a-2014a GPS data of mobile and continuous GPS measurement stations. The results show that: the Qilianshan Fault has a high strain accumulation background. There are locked portions on the Liupanshan Fault, especially in the region of Jingning, Pingling, Dingxi, Longxi. In 2004-2009a, the degree of locking of the Liupanshan Fault got higher. In 2009—2013a, crustal movement on the northern section of the North-South Seismic Belt weakened compared with 1999-2004, 2004-2009, and showed some features as follows: ① The velocity field weakened more markedly near the Qilian-Haiyuan-Liupanshan faults; ②The velocity decreased more significantly in the region north of Qilianshan-Haiyuan Fault than that of the south, resulting in enhanced thrust deformation on the Qilianshan Fault in 2009-2013a and the decreased sinistral shear deformation on the Qilianshan Fault and Haiyuan Fault; ③the velocity field decreased more remarkably at 50km west of Liupanshan Fault, compared to the east region, which led to the locked range on the Liupanshan Fault extending to the range of 100km near the fault zone during 2009-2013 from the previous locked range of 50km near the fault. The GPS baseline time series analysis also reveals a number of structural features in the region: Yinchuan Graben is continuing extending, and the extension in the west is stronger than that in the east. On the southern end of Yinchuan Graben, the deformation is very small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号