首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new method to estimate surface-level particulate matter(PM)concentrations by using satellite-retrieved Aerosol Optical Thickness(AOT).This method considers the distribution and variation of Planetary Boundary Layer(PBL)height and relative humidity(RH)at the regional scale.The method estimates surface-level particulate matter concentrations using the data simulated by an atmospheric boundary layer model RAMS and satellite-retrieved AOT.By incorporation MODIS AOT,PBL height and RH simulated by RAMS,this method is applied to estimate the surface-level PM 2.5 concentrations in North China region.The result is evaluated by using 16 ground-based observations deployed in the research region,and the result shows a good agreement between estimated PM 2.5 concentrations and observations,and the coefficient of determination R2 is 0.61 between the estimated PM 2.5 concentrations and the observations.In addition,surface-level PM 2.5 concentrations are also estimated by using MODIS AOT,ground-based LIDAR observations and RH measurements.A comparison between the two estimated PM 2.5 concentrations shows that the new method proposed in this paper is better than the traditional method.The coefficient of determination R2 is improved from 0.32 to 0.62.  相似文献   

2.
Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful for acquiring data for soil digital mapping,precision agriculture and soil survey.In this study,1581 soil samples were collected from 14 provinces in China,including Tibet,Xinjiang,Heilongjiang,and Hainan.The samples represent 16 soil groups of the Genetic Soil Classification of China.After air-drying and sieving,the diffuse reflectance spectra of the samples were measured under laboratory conditions in the range between 350 and 2500 nm using a portable vis-NIR spectrometer.All the soil spectra were smoothed using the Savitzky-Golay method with first derivatives before performing multivariate data analyses.The spectra were compressed using principal components analysis and the fuzzy k-means method was used to calculate the optimal soil spectral classification.The scores of the principal component analyses were classified into five clusters that describe the mineral and organic composition of the soils.The results on the classification of the spectra are comparable to the results of other similar research.Spectroscopic predictions of soil organic matter concentrations used a combination of the soil spectral classification with multivariate calibration using partial least squares regression(PLSR).This combination significantly improved the predictions of soil organic matter(R2=0.899;RPD=3.158)compared with using PLSR alone(R2=0.697;RPD=1.817).  相似文献   

3.
This paper describes a reliable and rapid method for the complete separation and quantitation of twenty-five amino acids typically found in plants, based on reversed phase high-performance liquid chromatography–linked fluorescence detector using a 150×4.6 mm Zorbax Eclipse AAA column. Plant tissue free amino acids(FAA)were extracted by ultrasonication with 5%(v/v) aqueous trifluoroacetic acid followed by ultrafiltration of extracts.The following analysis of amino acids was performed through programmed precolumn derivatization with orthophthalaldehyde and 9-fluorenylmethyl chloroformate reagents and efficient elution of derivatives within 26 min using binary gradient scheme. The method was validated over a concentration range of 4.5–450 μmol L~(-1)(μM).Separation analysis showed good selectivity(resolution1.5) for most amino acids. The average repeatability(RSD%, relative standard deviation) of the analysis at seven calibration concentrations was below 4% and ranged from 1.13% to 12.04%. The intra-day mean coefficient of variation at two concentrations(22.5 and 90 μM) was within 2%, and the intermediate precision was less than 4%. The limits of detection were between 0.012 and 6.68 μM. The coefficients of determination(R2) of the linear calibration curves were from 0.9989 to 0.9999.When the method was applied to plant samples, the FAA recoveries at two spiked levels(25 and 100 μM) ranged from 67.0% to 108.9% with an average of 94.4%, and the precision was 0.26%–12.31% RSD. A specific application combining this method with optimized extraction and interference removal procedures was successfully used to determine the FAA pools in different plant tissues. Finally,a PLS-DA multivariate statistics model was validated for the classification of three plant species according to their FAA profiles.  相似文献   

4.
By comparing three sequential extraction procedures, a new optimized extraction scheme for the molybdenum association in environmental samples was proposed.Five operational steps were described as exchangeable(KH_2PO_4+K_2HPO_4: including water-soluble), associated with organic matter(NaOH), Fe–Mn oxides and/or carbonates(HCl), sulfides(H_2O_2) and residue(HNO_3+HF+H_2O_2). An optimized extraction scheme was compared with Tessier's procedure and the Commission of European Communities Bureau of Reference(BCR) was applied to black shales. Results showed Tessier's procedure gave the lowest concentration values for exchangeable molybdenum and the highest values for the residual molybdenum, which could not present the efficiency of the extraction reagents. BCR's procedure showed the highest values in oxidizable molybdenum and presented four fractions of molybdenum, which did not demonstrate the fractions of molybdenum in the black shales in detail. The optimized extraction scheme demonstrated a certain improvement on extraction efficiency over Tessier's procedure for the lowest residual molybdenum, and revealed more featured fraction information of molybdenum in black shales than BCR's. Therefore, after a comparison with other two extraction procedures, the optimized extraction scheme proved suitable for the molybdenum in black shales and it also showed an accurate determination of the molybdenum in the fractions and source of bioavailable Mo.  相似文献   

5.
Although the calculation of radiative transfer in the middle-shortwave infrared band is important in the field of optical remote sensing, studies in this area of research are rare in China. Both solar reflection and atmospheric emission should be considered when calculating radiative transfer in the middle-shortwave infrared band. This paper presents a new radiative transfer model based on the doubling and adding method. The new model uses approximate calculations of direct solar reflection,multiple scattering, and thermal emissions for a finitely thin atmospheric layer and considers both the solar and thermal sources of radiation. To verify its accuracy, the calculation results produced by the model for four typical scenarios(single layer at night,multi-layer aerosols, double-layer with ice and water clouds, and multi-layer with clouds and aerosols) were compared with those of the DISORT model. With the exception of a few channels, the absolute deviation between the two models was less than2×10~(-6) K. For the same calculation, the computation speed of the new model was approximately two to three times faster than that of the DISORT model. Sensitivity studies were performed to evaluate the error resulting from using simplified calculation methods in the new model. The results obtained in this study indicated that atmospheric thermal emission made a significant contribution to the measured radiance in the strong-absorption band(2230–2400 cm~(-1)), whereas solar radiation could be neglected in this region. However, neglecting solar radiation in the window region(2400–2580 cm~(-1)) introduced error on the order of dozens of K. Employing the average-layer temperature method simplified the calculation of thermal radiation but caused a larger error in the strong-absorption band than in the window region. In the doubling and adding method, the calculation error decreased as the value used for minimum optical thickness decreased. Under the condition of satisfying the requirement of calculation precision, we can consider using the layer-average temperature radiation method and selecting a relative larger minimum optical thickness value to improve the calculation efficiency. The new radiative calculation model proposed herein can be used in the simulation, inversion, and assimilation of middle-shortwave infrared measurements by hyper-spectral satellite instruments.  相似文献   

6.
Sulfur(S) is an important element for understanding redox processes, ore formation, environmental chemistry, volcanism and climate. Here, we present a method for in situ S concentration measurement by LA-ICP-MS at the50–100 lm length scale using a 213 nm laser ablation set up coupled to a single-collector magnetic sector ICP-MS with high resolution capabilities. Analyses were performed in medium mass resolution(m/Dm = 3000) mode, which allows for the separation of32 S and34S from molecular interferences. S is simultaneously analyzed along with all major and minor elements so that a priori knowledge of an internal standard concentration is not necessary; this allows for in situ bulk analysis of aphyric groundmass in volcanic rocks or other fine-grained samples. The primary limitation in analyzing S by laser ablation was found to be long-term instrumental drift in fractionation of elemental S relative to other elements,presumably due to drift in laser dynamics. A method for correcting for such fractionation over time was implemented.After correcting for such drift, measurements of homogeneous basaltic glasses are reproducible to within 10 % for high concentration samples([500 ppm) and to within 20 % for low concentration samples(\200 ppm). The applicability of the method was demonstrated using natural and synthetic glasses, aphyric lavas, and micro-laminated sediments.  相似文献   

7.
In near-infrared spectroscopy,the traditional feature band extraction method has certain limitations.Therefore,a band extraction method named the three-step extraction method was proposed.This method combines characteristic absorption bands and correlation coefficients to select characteristic bands corresponding to various spectral forms and then uses stepwise regression to eliminate meaningless variables.Partial least squares regression(PLSR)and extreme learning machine(ELM)models were used to verify the effect of the band extraction method.Results show that the differential transformation of the spectrum can effectively improve the correlation between the spectrum and nickel(Ni)content.Most correlation coefficients were above 0.7 and approximately 20%higher than those of other transformation methods.The model effect established by the feature variable selection method based on comprehensive spectral transformation is only slightly affected by the spectral transformation form.Infive types of spectral transformation,the RPD values of the proposed method were all within the same level.The RPD values of the PLSR model were concentrated between 1.6 and 1.8,and those of the ELM model were between 2.5 and2.9,indicating that this method is beneficial for extracting more complete spectral features.The combination of the three-step extraction method and ELM algorithm can effectively retain important bands associated with the Ni content of the soil.The model based on the spectral band selected by the three-step extraction method has better prediction ability than the other models.The ELM model of the first-order differential transformation has the best prediction accuracy(RP^2=0.923,RPD=3.634).The research results provide some technical support for monitoring heavy metal content spectrum in local soils.  相似文献   

8.
Two-way concrete slabs are widely used around the world for the construction of many types of infrastructures and common buildings. The optimal sensor placement(OSP) in slabs with various opening positions is the most important issue in structural health monitoring(SHM) to increase reliability. In this study, a novel approach of OSP was evaluated to obtain the number and placement of sensors using examination of the closed loop performance. The nonlinear finite element(NFE) was used to discretize the mechanism behavior of slab. Multi-Objective Optimization based on the coordinate modal assurance criterion(COMAC) and cost considerations was considered in the optimization processes. All of the analysis, discretization and optimization process was designed and developed as a novel approach in Matlab by the author under the name ‘FEMS-COMAC'(FEM analysis of slab with COMAC). The points in the finite element method(FEM) mesh were classified as line by line information along the slab. The OSP in each line was optimized according to the objective function. The slabs with various width, thickness, aspect ratio and opening position were selected as case studies. The results of the OSP using the COMAC algorithm around the slab openings were compared with the novel ‘FEMS-COMAC' method. The statistical analysis according Mann-Whitney criteria shows that there were significant differences between them in some of the case studies(mean P-value=0.54).  相似文献   

9.
Arsenic(As) contamination in groundwater is a major problem in many countries, which causes serious health issues. In this paper, a novel method has been developed for the simultaneous removal of ROX and As(Ⅲ/Ⅴ) using the modified sorghum straw biochar(MSSB). The MSSB was characterized by X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared, and Brunauer–Emmet–Teller(BET) surface area.The removal performance of MSSB for ROX, arsenite[As(Ⅲ)], and arsenate(As(Ⅴ)) was investigated using batch experiments. At pH of 5, the arsenic concentration of 1.0 mg/L, adsorbent dose of 1.0 g/L, the maximum adsorptioncapacities of ROX,As(Ⅲ),and As(Ⅴ) were 12.4, 5.3, and 23.0 mg/g, respectively. The adsorption behaviors were fit well with the Langmuir and the pseudo-second-order rate model. The results showed that MSSB acted as a highly effective adsorbent to simultaneously remove the composite pollution system consisted of ROX and As(Ⅲ/Ⅴ) in aqueous solutions,providing a promising method in environmental restoration applications.  相似文献   

10.
Laboratory experiments of depth-limited open-channel flows over a gravel bed were conducted in the study.Two gravel patches with identical individual element size and different lengths(3.81 m and 7.5 m)were tested.The depth-limited uniform flow regime with relative submergence S_r(= D/k_s) ranging from2.68 to 5.94 was produced by adjusting the tailgate weir.The velocity profiles were measured by using both an ultra-sound velocity profiler(UVP) and an acoustic Doppler velocimeter(ADV).The conventional methods used to determine the zero-plane displacement and estimate the bed shear velocity were then reviewed and compared.The measured double-averaged(DA) velocity profiles were found to fit well with the log law and defect law with a non-universal Karman constant κ./κ-value remains nearly constant and in the range from 0.2 to 0.3 for the long patch(LP) cases and κ-values are scattered within a wider range from 0.3 to 0.5 for the short patch(SP) cases.While the Br-value in log law remains constant and equal to 8.5 for LP cases,the Br-value was found to decrease with the increase of the dimensionless roughness height k_s~+ for SP cases.The streamwise turbulence intensity distributions were found to be independent on the patch length and agree well with the available experimental data in the intermediate region and wall region.The Manning resistance coefficient and Darcy-Weisbach friction factor were analyzed.The κ-value decreases to 0.22 for the fitting of the logarithmic flow resistance law under small relative submergence.The value of the integration constant Ar in the logarithmic law falls within the normal range between 3.25 and 6.25.  相似文献   

11.
《国际泥沙研究》2016,(3):257-263
The effects of sedimentation reduction at the Nakdong River Estuary Barrage (NREB) in Korea were quantitatively analyzed with respect to different sediment control methods using the calibrated and validated two-dimensional model. The countermeasures of sediment dredging, sediment flushing, channel geometry change, and a combination of flushing and channel geometry change were examined for the approach channel of the NREB. The flood event and channel geometries of the 3.8 km section upstream of the NREB surveyed before and after dredging in 2007 were used for modeling conditions. As a result, the half of sediments dredged in 2007 could be eliminated naturally by floods without dredging. The numerical simulation of sediment flushing indicated that the deposition height decreased in the entire simulation section with the minimum and maximum reductions from 0.3 m to 1.3 m in deposition height. The channel contraction method produced quantitatively the largest amount of sedimentation reduction and sediment flushing and dredging followed. Sedimentation reduction by a combination of flushing and channel contraction was up 10%compared to the individual method of channel contraction.  相似文献   

12.
Wang  Yuesi  Li  Wenjie  Gao  Wenkang  Liu  Zirui  Tian  Shili  Shen  Rongrong  Ji  Dongsheng  Wang  Shuai  Wang  Lili  Tang  Guiqian  Song  Tao  Cheng  Mengtian  Wang  Gehui  Gong  Zhengyu  Hao  Jiming  Zhang  Yuanhang 《中国科学:地球科学(英文版)》2019,62(12):1857-1871
Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationality of environmental air quality control strategies.Based on the sampling and chemical composition data of PM_(2.5) in different key regions of China in the CARE-China observation network,this research analyzes the environmental air quality data released by the China National Environmental Monitoring Centre during the studied period to determine the changes in the particulate matter mass concentration in key regions and the evolution of the corresponding chemical compositions during the implementation of the Action Plan for Prevention and Control of Air Pollution from 2013-2017.The results show the following.(1) The particulate matter mass concentration in China showed a significant downward trend;however,the PM_(2.5) annual mass concentration in 64% of cities exceeds the New Chinese Ambient Air Quality Standard(CAAQS) Grade Ⅱ(GB3095-2012).The region to the east of the Taihang Mountains,the Fenhe and Weihe River Plain and the Urumqi-Changji regions in Xinjiang,all have PM_(2.5) concentration loading that is still high,and heavy haze pollution occurred frequently in the autumn and winter.(2) During the heavy pollution in the autumn and winter,the concentrations of sulfate and organic components decreased significantly.The mean SO_4~(2-) concentration in PM_(2.5) decreased by 76%,12%,81% and 38% in Beijing-Tianjin-Hebei(BTH),the Pearl River Delta(PRD),the Sichuan-Chongqing region(SC) and the Fenhe and Weihe River Plain,respectively.The mean organic matter(OM) concentration decreased by 70%,44%,48% and 31%,respectively,and the mean concentration of NH_4~+ decreased by 68%,1.6%,38% and 25%,respectively.The mean elemental carbon(EC) concentration decreased by 84% and 20% in BTH and SC,respectively,and it increased by 61% and 11% in the PRD and Fenhe and Weihe River Plain,respectively.The mean concentration of mineral and unresolved chemical components(MI) dropped by 70%,24% and 13% in BTH,the PRD and the Fenhe and Weihe River Plain,respectively.The change in the PM_(2.5) chemical composition is consistent with the decrease of the PM_(2.5)mass concentration.(3) In 2015,the mean OM concentration contributions to fine particles and coarse particles were 13-46%and 46-57%,respectively,and the mean MI concentration contributions to fine particles and coarse and particles were 31-60%and 39-73%,respectively;these values are lower than the 2013 values from the key regions,which is the most important factor behind the decrease of the particulate matter mass concentration.From 2013 to 2015,among the chemical components of different particle size fractions,the peak value of the coarse particle size fraction decreased significantly,and the fine particle size fractions of SO_4~(2-),NO_3~-,and NH_4~+ decreased with the decrease of the particulate matter mass concentration in different particle size fractions.The fine-particle size peaks of SO_4~(2-),NO_3~-and NH_4~+ shifted from 0.65-1.1μm to the finer size range of0.43-0.65 μm during the same time frame.  相似文献   

13.
Pollutants are carried by sediment-laden flow dissolved in water or adsorbed on sediment particles. A transient three-dimensional model based on a compressible VOF(volume of fluid) method was developed to simulate the transport of dissolved and particulate pollutants.VOF is a numerical technique for acquiring and tracking the free surface of water flow.Local scouring,deposition and re-suspension were simulated and the processes of adsorption and desorption of pollutants on suspended sediment were analyzed.A series of experiments and numerical simulations were performed to study the transportation and dispersion of pollutants in the flow around a non-submerged spur dyke in a straight flume of rectangular shape.The simulation results agreed well with the experimental results.A certain volume of pollutants solution was released into the flow at upstream of the spur dyke.The concentration reduced with time.The concentration reduction was slower in the circumfluence zone than in the main flow.The ratio of adsorption to desorption coefficients was different for pollutants on suspended sediment with different diameter.The peak concentration of dissolved pollutants increased with the ratio of the adsorption to the desorption coefficients.The angle of the spur dyke affected the peak concentration around the dyke.The effect of the angle on dissolved pollutants decreased with the ratio of adsorption to desorption coefficients.The adsorption and desorption coefficients,as well as the saturated adsorption capacity had no effect on the concentration of particulate pollutants.  相似文献   

14.
Sedimentary pigments are useful proxy indicators of phytoplankton biomass, community structure, primary productivity and human influence in lacustrine and oceanic ecosystems. Pigments are relatively labile due to their complex chemical structures, which makes the extraction and analysis of sedimentary pigments challenging. In addition, it is important to select appropriate methods to study sedimentary pigments in regions which lack previous investigations. In this study, we adopted the L_9(3~4) orthogonal design to develop methods of extraction and HPLC(high performance liquid chromatography) analysis of sedimentary pigments at two lakes on the Tibetan Plateau: meromictic lake-Dagze Co and dimictic lake-Jiang Co. The orthogonal design comprises 9 combinations of various parameters for extraction and HPLC analysis. The results show that the type and volume of solvent are the most important factors for pigment extraction, and the mobile phase and column selection are the most important for HPLC analysis. For the study sites, we found that the best methods to extract sedimentary pigments are as follows: the use of a mixture of acetone:methanol:water(80:15:5, v:v:v) as the extraction solvent; solvent/sample ratio of 10 m L/g; sonication for 30 s and standing extraction for 6 h. The best methods for HPLC analysis are as follows: Zorbax Eclipse plus C8 column with mobile phase A, methanol:acetonitrile:0.25 M aqueous pyridine(50:25:25, v:v:v) and mobile phase B, methanol: acetonitrile: acetone(20:60:20, v:v:v); p H of mobile phase A adjusted to 6 with acetic acid; and HPLC column temperature maintained at 40°C. The study provides an experimental basis for future investigations of past changes in primary productivity and the response of lake ecosystems to climate change and human activities on the Tibetan Plateau.  相似文献   

15.
Remote sensing based land cover mapping at large scale is time consuming when using either supervised or unsupervised classification approaches. This article used a fast clustering method—Clustering by Eigen Space Transformation(CBEST) to produce a land cover map for China. Firstly, 508 Landsat TM scenes were collected and processed. Then, TM images were clustered by combining CBEST and K-means in each pre-defined ecological zone(50 in total for China). Finally, the obtained clusters were visually interpreted as land cover types to complete a land cover map. Accuracy evaluation using 2159 test samples indicates an overall accuracy of 71.7% and a Kappa coefficient of 0.64. Comparisons with two global land cover products(i.e., Finer Resolution Observation and Monitoring of Global Land Cover(FROM-GLC) and GlobCover 2009) also indicate that our land cover result using CBEST is superior in both land cover area estimation and visual effect for different land cover types.  相似文献   

16.
Geng  Guannan  Xiao  Qingyang  Zheng  Yixuan  Tong  Dan  Zhang  Yuxuan  Zhang  Xiaoye  Zhang  Qiang  He  Kebin  Liu  Yang 《中国科学:地球科学(英文版)》2019,62(12):1872-1884
China promulgated the Air Pollution Prevention and Control Action Plan(the Action Plan) in 2013 and developed stringent control measures to mitigate fine particulate matter(PM_(2.5) pollution.Here,we investigated the PM_(2.5) chemical composition changes over eastern China associated with the Action Plan during 2013-2017 using satellite-based PM_(2.5) chemical composition data derived using CMAQ simulations and satellite inputs.The PM_(2.5) concentrations decreased considerably during this time as a result of the reductions in all chemical species in PM_(2.5).The population-weighted mean concentrations over eastern China decreased from 11.1 to 6.7μgm~(-3) for SO_4~(2-),13.8-13.1μgm~(-3) for NO_3~-,7.4-5.8μgm~(-3) for NH_4~+,9.9-8.4μgm~(-3) for OM,4.6-3.8 μg m~(-3) for BC and 12.9-9.6 μg m~(-3) for other species in PM_(2.5).SO_4~(2-) had the largest reduction of 40%,while NO_3~-had the lowest reduction of 5%,resulting in a greater fraction of NO_3~-and a smaller fraction of SO_4~(2-) in PM_(2.5).Among the three key regions,Beijing-Tianjin-Hebei had the largest reduction in PM_(2.5) and its chemical compositions.The decrease in SO_4~(2-) concentrations was in line with the reduction of SO_2 emissions,and the major driver of the SO_2 emission reductions was the industrial sector.The decrease in NO_3 concentrations was limited because the decrease in SO_2 emissions and the stable NH_3 emissions facilitated the formation of NO_3~- from HNO_3,which partiall_y offset the reduction in NO_x emissions driven by the power sector.To mitigate PM_(2.5) pollution more effectively,future efforts are needed to reduce NH_3 emissions.  相似文献   

17.
Bai  Wenguang  Zhang  Peng  Zhang  Wenjian  Li  Jun  Ma  Gang  Qi  Chengli  Liu  Hui 《中国科学:地球科学(英文版)》2020,63(9):1353-1365
Due to the polarization effects of the Earth's surface reflection and atmospheric particles' scattering, high-precision retrieval of atmospheric parameters from near-infrared satellite data requires accurate vector atmospheric radiative transfer simulations. This paper presents a near-infrared vector radiative transfer model based on the doubling and adding method. This new model utilizes approximate calculations of the atmospheric transmittance, reflection, and solar scattering radiance for a finitely thin atmospheric layer. To verify its accuracy, the results for four typical scenarios(single molecular layer with Rayleigh scattering, single aerosol layer scattering, multi-layer Rayleigh scattering, and true atmospheric with multi-layer molecular absorption, Rayleigh and aerosol scattering) were compared with benchmarks from a well-known model. The comparison revealed an excellent agreement between the results and the reference data, with accuracy within a few thousandths. Besides, to fulfill the retrieval algorithm, a numerical differentiation-based Jacobian calculation method is developed for the atmospheric and surface parameters. This is coupled with the adding and doubling process for the radiative transfer calculation. The Jacobian matrix produced by the new algorithm is evaluated by comparison with that from the perturbation method. The relative Jacobian matrix deviations between the two methods are within a few thousandths for carbon dioxide and less than 1.0×10~(-3)% for aerosol optical depth. The two methods are consistent for surface albedo, with a deviation below 2.03×10~(-4)%. All validation results suggest that the accuracy of the proposed radiative transfer model is suitable for inversion applications. This model exhibits the potential for simulating near-infrared measurements of greenhouse gas monitoring instruments.  相似文献   

18.
The purpose of the current study is to compare the influence of different aerobic conditions(biostimulation(BS),bioaugmentation(BA),and a combination of biostimulation and bioaugmentation(BB))on polycyclic aromatic hydrocarbons(PAH)degradation and compare the degraded amount with single step XAD-4 extraction as a new tool for bioavailability assessment for chronically contaminated sediment samples obtained from territory of Autonomous Province Vojvodina of Serbia(S1,S2,and S3).A great number of papers dealing with biodegradation of PAHs in spiked sediment or soil have been published,but to the authors’knowledge,a limited number of papers studied aged,historically polluted sediment and a sum of chosen U.S.Environmental Protection Agency(USEPA)PAHs.A significant reduction(up to67%)in PAH concentration was observed,while the percentage of reduction varied depending on the sediment sample and treatment used.BS treatment successfully stimulated growth of indigenous bacteria.Further,PAH-degrading strain Sphingomonas paucimobilis F8 inoculated in BA and BB treatment survived for up to 7 weeks after it was suppressed by unfavorable conditions or native microbes.Degraded amounts generally showed good correlation with results obtained from XAD-4 extraction.Results obtained in the current study represent a good start for standardizing a XAD-4 extraction technique as a simplified,easier,and lower cost method for bioavailability assessment.  相似文献   

19.
Acoustic emission (AE) monitoring is a non-invasive method of monitoring fracturing both in situ, and in experimental rock deformation studies. Until recently, the major impediment for imaging brittle failure within a rock mass is the accuracy at which the hypocenters may be located. However, recent advances in the location of regional scale earthquakes have successfully reduced hypocentral uncertainties by an order of magnitude. The least-squares Geiger, master event relocation, and double difference methods have been considered in a series of synthetic experiments which investigate their ability to resolve AE hypocentral locations. The effect of AE hypocenter location accuracy due to seismic velocity perturbations, uncertainty in the first arrival pick, array geometry and the inversion of a seismically anisotropic structure with an isotropic velocity model were tested. Hypocenters determined using the Geiger procedure for a homogeneous, isotropic sample with a known velocity model gave a RMS error for the hypocenter locations of 2.6 mm; in contrast the double difference method is capable of reducing the location error of these hypocenters by an order of magnitude. We test uncertainties in velocity model of up to ±10% and show that the double difference method can attain the same RMS error as using the standard Geiger procedure with a known velocity model. The double difference method is also capable of precise locations even in a 40% anisotropic velocity structure using an isotropic model for location and attains a RMS mislocation error of 2.6 mm that is comparable to a RMS mislocation error produced with an isotropic known velocity model using the Geiger approach. We test the effect of sensor geometry on location accuracy and find that, even when sensors are missing, the double difference method is capable of a 1.43 mm total RMS mislocation compared to 4.58 mm for the Geiger method. The accuracy of automatic picking algorithms used for AE studies is ±0.5 μs (1 time sample when the sampling rate is 0.2 μs). We investigate how AE locations are effected by the accuracy of first arrival picking by randomly delaying the actual first arrival by up to 5 time samples. We find that even when noise levels are set to 5 time samples the double difference method successfully relocates the synthetic AE.  相似文献   

20.
Based on Single-Link Cluster (SLC) analysis,a new method to identify the foreshocks andaftershocks of a strong shock from the earthquake catalogue and then to form a sequencecatalogue has been proposed in this paper.In the SLC frame,there are many chains formedby links with lengths shorter than or equal to the characteristic length Lc.It is defined thatwhen some of these chains connect with a strong shock,the seismic events on such chainsfirm a sequence with the strong shock.In this sequence,the strong shock is the main shock;the events preceding the main shock are foreshocks and those following the main shock areaftershocks.By using this method,the foreshocks and aftershocks associated with the M_s7.4Haicheng earthquake and with the strong shocks of M_s≥6.0 in the top area of Kunlun-AltunArc were identified and sequence catalogues for these strong shocks were set up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号