首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete surface deformation of 2015 Mw 8.3 Illapel, Chile earthquake is obtained using SAR interferograms obtained for descending and ascending Sentinel-1 orbits. We find that the Illapel event is predominantly thrust, as expected for an earthquake on the interface between the Nazca and South America plates, with a slight right-lateral strike slip component. The maximum thrust-slip and right-lateral strike slip reach 8.3 and 1.5 m, respectively, both located at a depth of 8 km, northwest to the epicenter. The total estimated seismic moment is 3.28 × 1021 N.m, corresponding to a moment magnitude Mw 8.27. In our model, the rupture breaks all the way up to the sea-floor at the trench, which is consistent with the destructive tsunami following the earthquake. We also find the slip distribution correlates closely with previous estimates of interseismic locking distribution. We argue that positive coulomb stress changes caused by the Illapel earthquake may favor earthquakes on the extensional faults in this area. Finally, based on our inferred coseismic slip model and coulomb stress calculation, we envision that the subduction interface that last slipped in the 1922 Mw 8.4 Vallenar earthquake might be near the upper end of its seismic quiescence, and the earthquake potential in this region is urgent.  相似文献   

2.
Earthquake Triggering along the Xianshuihe Fault Zone of Western Sichuan,China   总被引:19,自引:0,他引:19  
Western Sichuan is among the most seismically active regions in southwestern China and is characterized by frequent strong (M 6.5) earthquakes, mainly along the Xianshuihe fault zone. Historical and instrumental seismicity show a temporal pattern of active periods separated by inactive ones, while in space a remarkable epicenter migration has been observed. During the last active period starting in 1893, the sinistral strike–slip Xianshuihe fault of 350 km total length, was entirely broken with the epicenters of successive strong earthquakes migrating along its strike. This pattern is investigated by resolving changes of Coulomb failure function (CFF) since 1893 and hence the evolution of the stress field in the area during the last 110 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic halfspace, and taking into account both the coseismic slip in strong (M 6.5) earthquakes and the slow tectonic stress buildup associated with major fault segments. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We evaluate whether these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. It was found that all strong earthquakes, and moreover, the majority of smaller events for which reliable fault plane solutions are available, have occurred on stress–enhanced fault segments providing a convincing case in which Coulomb stress modeling gives insight into the temporal and spatial manifestation of seismic activity. We extend the stress calculations to the year 2025 and provide an assessment for future seismic hazard by identifying the fault segments that are possible sites of future strong earthquakes.  相似文献   

3.
In this work we analyze the tectonic setting of the recent damaging seismic series occurred in the Internal Zones of the eastern Betic Cordillera (SE Spain) and surrounding areas, the tectonic region where took place the 11th May 2011 Mw 5.2 Lorca earthquake. We revisit and make a synthesis of the seven largest and damaging seismic series occurred from 1984 to 2011. We analyze their seismotectonic setting, and their geological sources under the light of recent advances in the knowledge on active faults, neotectonics, seismotectonics and stress regime, with special attention focused on the Lorca Earthquake. These seismic series are characterized by two types of focal mechanisms, produced mainly by two sets of active faults, NNW–SSE to NNE–SSW small (no larger than 20–30 km) extensional faults with some strike slip component, and E–W to NE–SW large strike slip faults (more than 50 km long) with some compressional component (oblique slip faults). The normal fault earthquakes related to the smaller faults are dominant in the interior of large crustal tectonic blocks that are bounded by the large E–W to NE–SW strike-slip faults. The strike slip earthquakes are associated to the reactivation of segments or intersegment regions of the large E–W to NE–SW faults bounding those crustal tectonic blocks. Most of the seismic series studied in this work can be interpreted as part of the background seismicity that occurs within the crustal blocks that are strained under a transpressional regime driven by the major strike slip shear corridors bounding the blocks. The seismotectonic analysis and the phenomenology of the studied series indicate that it is usual the occurrence of damaging compound earthquakes of M  \(\sim \)  5.0 associated with triggering processes driven by coseismic stress transfer. These processes mainly occur in the seismic series generated by NNW–SSE to NNE–SSW faults. These mechanical interaction processes may induce a higher frequency of occurrence of this kind of earthquakes than considered in traditional probabilistic seismic hazard assessments and it should be taken into account in future seismic hazard assessments.  相似文献   

4.
Western Turkey has a long history of destructive earthquakes that are responsible for the death of thousands of people and which caused devastating damage to the existing infrastructures, and cultural and historical monuments. The recent earthquakes of Izmit (Kocaeli) on 17 August, 1999 (M w  = 7.4) and Düzce (M w  = 7.2) on 12 November, 1999, which occurred in the neighboring fault segments along the North Anatolian Fault (NAF), were catastrophic ones for the Marmara region and surroundings in NW Turkey. Stress transfer between the two adjacent fault segments successfully explained the temporal proximity of these events. Similar evidence is also provided from recent studies dealing with successive strong events occurrence along the NAF and parts of the Aegean Sea; in that changes in the stress field due to the coseismic displacement of the stronger events influence the occurrence of the next events of comparable size by advancing their occurrence time and delimiting their occurrence place. In the present study the evolution of the stress field since the beginning of the twentieth century in the territory of the eastern Aegean Sea and western Turkey is examined, in an attempt to test whether the history of cumulative changes in stress can explain the spatial and temporal occurrence patterns of large earthquakes in this area. Coulomb stress changes are calculated assuming that earthquakes can be modeled as static dislocations in elastic half space, taking into account both the coseismic slip in large (M ≥ 6.5) earthquakes and the slow tectonic stress buildup along the major fault segments. The stress change calculations were performed for strike-slip and normal faults. In each stage of the evolutionary model the stress field is calculated according to the strike, dip, and rake angles of the next large event, whose triggering is inspected, and the possible sites for future strong earthquakes can be assessed. A new insight on the evaluation of future seismic hazards is given by translating the calculated stress changes into earthquake probability using an earthquake nucleation constitutive relation, which includes permanent and transient effects of the sudden stress changes.  相似文献   

5.
— Earthquake faultings have a wide variety of slip behaviors, such as, a log-linear frequency-magnitude relation, characteristic earthquakes, slow slip events, and so on. We report a model which can reproduce a certain variety of observed complex slip behaviors on a fault. Our 3-D model simulates the seismic cycle on a shallow dipping subduction fault in a homogeneous elastic half-space, on which frictional sliding is controlled by a rate- and state-dependent friction law. We find that the behaviors of reproduced seismic cycles depend on a lateral dimension of a seismogenic zone (H) with respect to a constant seismogenic width in dip direction (W). The following three domains appear in the seismic cycle behaviors: (1) Regular, periodic behaviors when H is comparable to W; (2) transitional, quasi-periodic behaviors when H/W~ 3; and (3) complex behaviors when H/W is larger than about 4. The slip behavior in the domain (1) is characterized by a periodical recurrence of a characteristic earthquake, which is centered in strike direction. In the domain (2), although earthquakes are still centered, these recurrence intervals and the sizes are modulated within a certain range. Also, in the domain (3), earthquakes occur not only at the center but at various lateral positions on the seismogenic zone. In this domain, the log-linear frequency-magnitude relations, like the Gutenberg-Richter relation, are produced. Slow slip events also occur at source areas of the earthquakes. It is suggested that a heterogeneous stress distribution at a source region is important, as well as heterogeneities in friction properties on the fault, for understanding the wide variety of slip behaviors in faultings.  相似文献   

6.
We established a three-dimensional finite element model of the Anninghe-Zemuhe-Xiaojiang faults region using contact surfaces of different sizes to describe the spatial segmentation characteristics of the faults. Our model is based on constraints from GPS observations, models of the crust and upper mantle, precise earthquake locations, the tectonic stress field, the slip rate of the faults, and the rheology of the lithosphere in the Sichuan-Yunnan area. Considering the influence of strong earthquakes since A.D. 1327, we analyzed the main controlling factors of the characteristics of the strong earthquakes and also studied by numerical simulation the possible areas of future earthquake risk and their relationship with tectonic stress. The numerical results showed that the gravitational potential energy of the Qinghai-Tibet Plateau and the interaction of adjacent blocks are the main kinetic factors affecting the characteristics of the tectonic stress distribution. There appears to be some correspondence between the distribution of tectonic stress and the b value; however, we also found that some low b value locations correspond to regions of lower stress. This contradiction may be the result of some comprehensive factors, such as the release of strain energy caused by strong earthquakes.  相似文献   

7.
We conducted a laser-equipped analog experiment aimed at quasi-continuously monitoring the growth of a dense population of normal faults in homogeneous conditions. To further understand the way geological faults progressively gain in slip and length as they accumulate more strain, we measured with great precision the incremental slip and length changes that the analog faults sustain as they grow. These measurements show that the analog faults share common features with the natural ones. In particular, during their growth, the faults develop and maintain cumulative slip profiles that are generally triangular and asymmetric. The growth takes place through two distinct phases: an initial, short period of rapid lateral lengthening, followed by a longer phase of slip accumulation with little or no lengthening. The incremental slip is found to be highly variable in both space (along the faults) and time, resulting in variable slip rates. In particular, ‘short- and long-term’ slip rates are markedly different. We also find that slip measurements at local points on fault traces do not contain clear information on the slip increment repeat mode. Finally, while the fault growth process is highly heterogeneous when considered at the scale of a few slip events, it appears homogeneous and self-similar at longer time scales which integrate many slip increments. This is likely to be the result of a feedback between stress heterogeneities and slip development. The long-term scale homogeneity also implies that the long-term faulting process is primarily insensitive to the short-term heterogeneities that are rapidly smoothed or redistributed. We propose a new conceptual scenario of fault growth that integrates the above observations and we suggest that faults grow in a bimodal way as a result of a self-driven and self-sustaining process.  相似文献   

8.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   

9.
Warm and hot spring water as well as soil gas radon release patterns have been monitored in the Aegean Extensional Province of Western Turkey, alongside regional seismic events, providing a multi-disciplinary approach. In the study period of 20 months, seven moderate earthquakes with M L between 4.0 and 4.7 occurred in this seismically very active region; two earthquakes with magnitude 5.0 also occurred near the study area. Seismic monitoring showed no foreshock activity. By contrast, hydro-geochemical anomalies were found prior to these seismic events, each lasting for weeks. The anomalies occurred foremost in conjunction with dip-slip events and seem to support the dilatancy and water diffusion hypothesis. Increased soil gas radon release was recorded before earthquakes associated with strike-slip faults, but no soil radon anomalies were seen before earthquakes associated with dip-slip faults. Geochemical anomalies were also noticeably absent at some springs throughout the postulated deformation zones of impending earthquakes. The reason for this discrepancy might be due to stress/strain anisotropies.  相似文献   

10.
An intraplate earthquake doublet, with 11-min delay between the events, devastated the city of Varzeghan in northwestern Iran on August 11, 2012. The first Mw 6.5 strike-slip earthquake, which occurred after more than 200 years of low seismicity, was followed by an Mw 6.4 oblique thrust event at an epicentral separation of about 6 km. While the first event can be associated with a distinct surface rupture, the absence of a surface fault trace and no clear aftershock signature makes it challenging to identify the fault plane of the second event. We use teleseismic body wave inversion to deduce the slip distribution in the first event. Using both P and SH waves stabilize the inversion and we further constrain the result with the surface rupture extent and the aftershock distribution. The obtained slip pattern shows two distinct slip patches with dissimilar slip directions where aftershocks avoid high-slip areas. Using the estimated slip for the first event, we calculate the induced Coulomb stress change on the nodal planes of the second event and find a preference for higher Coulomb stress on the N-S nodal plane. Assuming a simple slip model for the second event, we estimate the combined Coulomb stress changes from the two events on the focal planes of the largest aftershocks. We find that 90% of the aftershocks show increased Coulomb stress on one of their nodal planes when the N-S plane of the second event is assumed to be the correct fault plane.  相似文献   

11.
The Xiaojiang fault zone constitutes part of the major Xianshuihe-Xiaojiang left lateral structure that bounds the rhombic-shaped block of Yunnan-Sichuan to the east. Long strike slip fault zones that have repeatedly accommodated intense seismic activity, constitute a basic feature of southeast China. Known historical earthquakes to have struck the study area are the 1713 Xundian of M6.8, 1725 Wanshou mountain of M6.8, the 1733 Dongchuan of M7.8, and the strongest one, the 1833 Songming of M8.0. Although instrumental record did not report events of this magnitude class, the 18th century clustering as well as the 19th century large event prompted the investigation of stress transfer along this fault zone. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong (M ≥ 6.8) earthquakes and the slow tectonic stress buildup along the major fault segments. Geological and geodetic data are used to infer the geometry of these faults and long term slip rates on them, as well as for the fault segments that slipped. Evidence is presented that the strong historical events as well as the ones of smaller magnitude that occurred during the instrumental era, are located in areas where the static stress was enhanced. By extending the calculations up to present, possible sites for future strong events are identified.  相似文献   

12.
We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.  相似文献   

13.
Nonuniform friction as a physical basis for earthquake mechanics   总被引:2,自引:0,他引:2  
A review of simple models and observations suggests that the main first-order features of active faulting-mechanical instability, the frequency-magnitude relations, seismic and aseismie slip, seismic radiation, incoherency and rupture stoppage — may be explained by a single characteristic of crustal faults: the spatial variation of the effective frictional stress, which resists slippage on faults. Faultoffset data suggest that rupture propagation ceases in regions of high resistance which act, as barriers. In these regions slippage is associated with negative stress drop. The spacing and the amplitudeA() of the barriers, as inferred from the frequency-magnitude and moment relation for earthquakes, obeys a simple statistical relationA()p. On the scale of particle motion, this variability of frictional stress provides a mechanical instability which may be associated with the concept of dynamic friction. Invariably, the rapid particle motion in the model is always preceded by accelerated creep. The particle acceleration is highly irregular, giving rise to an almost random acceleration record on the fault. The particle displacement is relatively smooth, giving rise to simple displacement time function in the far field. Rupture propagation time is approximately proportional to the gradient of frictional stress along the fault. Consequently sharp changes of this stress may cause multiple events and other long period irregularities in the fault motion.The power density spectrum associated with the frictional stress implies that stress may be related to a Poisson distribution of lengths. The autocorrelation of such type of distribution yields a correlation lengthk L –1 , similar perhaps toHaskell's (1964) andAki's (1967) correlation lengths inferred from spectral analysis of seismic waves. The partial incoherency of faulting implies that preseismic deformation may be significantly incoherent, consequently the prediction of small moderate earthquakes may be subject to inherent uncertainties. We conclude that frictional stress heterogeneities may be necessary and sufficient to explain active faulting associated with small and moderate earthquakes.  相似文献   

14.
Slip nucleation during earthquakes is apparently analogous to rupture nucleation within an intact rock sample subjected to triaxial loading. The observations indicate that both these nucleation processes initiate within a relatively small volume and in both the slip propagates unstably along a quasi-planar surface. In both processes a single, pre-existing, shear fracture cannot nucleate the large-scale slip, and in both a ‘process zone' that includes several interacting fractures in a small volume are required to initiate the unstable slip. Both processes require rupture of intact rocks, generate complex fracture geometry, and are associated with intense energy-release rate during slip. Recent observations and analyses are used to correlate rupture nucleation in laboratory tests with nucleation events of large earthquakes. It is proposed that earthquake nucleation occurs by the interaction among multiple fractures within a small volume that develops into unstable yielding of the healed fault zone.  相似文献   

15.
The relationship between the slip activity and occurrence of historical earthquakes along the Median Tectonic Line (MTL), together with that of the fault systems extending eastward has been examined. The MTL is divided into three segments, each containing diagnostic active faults. No historical earthquakes have been recorded along the central segment, although the segment has faster Quaternary slip rates compared with the other segments that have generated historical earthquakes. This discrepancy between earthquake generation and slip rate can be explained by a microplate model of southwest Japan. The microplate model also provides spatial and temporal coupling of slip on adjacent fault systems. In the context of this model, slip on adjacent faults reduces the normal stress on the MTL. Historical data and paleoseismic evidence indicate that slip on this segment occurs without significant strong ground motion. We interpret this as indicating anomalously slow seismic slip or aseismic slip. Slip on the central segment of the MTL creates transpressional regions at the eastern and western segments where historical earthquakes were recorded. Alternatively, the earthquakes at the eastern and western segments were triggered and concentrated shear stress at the edge of the segments resulted in postseismic slip along the central segment. The sequence of historical events suggests that the MTL characteristically does not produce great earthquakes. The microplate model also provides a tectonic framework for coupling of events among the MTL, the adjacent fault systems and the Nankai trough.  相似文献   

16.
We characterize the heterogeneous source slip model of intraslab earthquakes to compare source scaling properties with those of inland crustal and subduction-zone plate-boundary earthquakes. We extracted rupture area (S), total area of asperity (S a), average slip (D) and average slip on asperity (D a) of eleven intraslab earthquakes following the procedure proposed by Somerville et al. (Seism Res Lett 70:59?C80, 1999) and proposed the empirical scaling relationship formula of S, S a, and D for intraslab earthquakes. Under the same seismic moment, an intraslab earthquake has a smaller rupture area and total area of asperity, and smaller average slip than an inland crustal earthquake. The area ratio of asperity area and total rupture area of intraslab earthquakes are similar to those of inland crustal earthquakes. The strong motion generation area (SMGA) scaling of intraslab earthquakes appears self-similar, and those results support the idea the characterized source model of intraslab earthquakes can be modeled in a manner similar to that of inland crustal earthquakes.  相似文献   

17.
The Hsingtai, China earthquakes of March 1966 were a series of destructive earthquakes associated with the Shu-lu graben. Five strong shocks of Ms ≥ 6 occurred within a period of less than a month, the largest of which was Ms 7.2. Body and surface waves over the period range from several to 100 s have been modeled for the four largest events using synthetic seismograms in the time domain and spectral analysis in the frequency domain. Data from ground deformation, local geology, regional seismic network, and teleseismic joint epicenter determination have also been used to constrain the source model and the rupture process.The fault mechanism of the Hsingtai sequence was mainly strike-slip with a small component of normal dip-slip. The strikes of the four largest shocks range from ~ N26° to 30°E, approximately along strike of the major faults of the Shu-lu graben and the aftershock distribution. The source mechanisms can be explained with a NNW-SSE extensional stress and a NEE-SWW compressional stress acting in the area. The major shocks all had focal depths ~ 10 km.The four largest shocks in the sequence were characterized by a relatively simple and smooth dislocation time history. The durations of the far-field source time functions ranged from 3.5 to 5 s, while the rise times were all ~ 1 s. The seismic moments of the four largest earthquakes ranged from 1.43 × 1025 to 1.51 × 1026 dyne cm?1. The fault sizes of the four events were very close. Assuming circular faults, the diameters of the four events were determined to be between 10 and 14 km. Stress drops varied from ~ 52 to 194 bars. A trend of increasing stress drop with earthquake size was observed.A survey of stress drop determinations for 15 major intraplate earthquakes shows that on the average the magnitude of stress drop of oceanic intraplate earthquakes and passive continental margin events is higher (~ 200 to several hundred bars) than that of continental intraplate earthquakes (~ 100 bars or less).  相似文献   

18.
潮汐应力对地震的触发作用   总被引:6,自引:1,他引:6       下载免费PDF全文
丁中一  贾晋康  王仁 《地震学报》1983,5(2):172-184
文中计算了由日、月引潮力在地球内产生的潮汐应力场,研究了潮汐应力对地震的触发作用.采用的地球模型是分为十五层的球对称模型.对于近30年来我国或我国邻近发生的七十次较大的地震,计算了震源处在发震时刻的球坐标系中的潮汐应力.通过坐标变换,得到了发震断层面中的正应力及沿错动矢量方向的剪应力.根据岩石的库仑剪破裂准则来判断潮汐应力对所研究的震例是否具有触发作用.结果表明,在七十个震例中,潮汐应力对其中四十三个有触发作用.对于华北地区的十八个震例,潮汐应力对其中十四个有触发作用.还可看出,对于浅源走滑型地震有较明显的触发作用,而对浅源斜滑及倾滑型地震则没有明显的触发作用.对国外七十二个震例的计算结果得到了类似的结论.最后,对华北地区中任一可能的发震地点,提出一种根据潮汐应力来预测发震的危险时间范围的方法.   相似文献   

19.
We study the static stress changes caused by moderatemagnitude earthquakes that occurred in Umbria-Marcheduring a seismic sequence which started on September3, 1997, with a ML 4.7 foreshock and consisted ofeight earthquakes whose magnitudes range between 5.0and 6.0. The earthquakes occurred on normal faultsstriking in the Apennine direction and dipping at lowangles towards the SW. The goal is to verify if stresschanges induced by each mainshock can explain theoccurrence of subsequent events. Our results show thatthe foreshock slightly increased the Coulomb stress onthe first mainshock fault plane. The distribution ofseismicity that followed the foreshock is clustered inthe area of Coulomb stress increase comprised betweenthe two faults which ruptured in opposite directionsduring the two largest shocks of September 26. Thelocations and the geometry of the three largestearthquakes agree well with the pattern of Coulombstress changes suggesting elastic interaction betweenthese faults. However, we were not able to model thewhole sequence of ML 5.0 events in terms ofCoulomb stress changes. The difficulties are due tothe similarity of fault plane solutions for eventslocated very close to each other and in the hangingwall of the mainshock rupture planes. Our results showthat normal stress changes agree better with thespatial pattern of the whole sequence of moderatemagnitude events. If previous ruptures unclamp thefault planes of subsequent earthquakes, fluid flow canplay a dominant role in promoting earthquakes duringthe seismic sequence.  相似文献   

20.
This paper summarizes the available geological and geophysical material for faults as regards their role in the seismic process. The entirety of the geological and geophysical evidence is used to reveal hidden faults, which are important in influencing the spatial distribution of earthquakes, and to produce a map of the major earthquake-generating faults and lineaments in the Russian northeast. As well as the occurrence of earthquakes at known faults that have surface expression, we find that seismicity tends to occur at the hidden faults and lineaments we have identified, as well as at intersections of faults. We made a quantitative assessment of the relationship of seismicity to tectonic fragmentation of the crust, correlating the density and discordance measure for faults to indicators of seismic activity (rate and energy release of earthquakes per unit area) for the southeast flank of the Okhotsk-Lena seismic region. The results obtained in this study revealed some features in the spatial distribution of earthquakes occurring on land in the Okhotsk-Lena seismic region: the maximum level of seismic activity occurs in areas with moderate values of the discordance measure for faults (12 < ‖D‖ ≤ 18) as identified from gravity data and in zones of increased horizontal gradients of the lines of equal discordance. At these locations, the greatest probability of earthquake occurrence for events of energy class K ≥ 12 corresponds to moderate values of the density of faults visible at the surface (0.12 < τ ≤ 0.16 km?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号