首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

We developed a water-use conflict analysis framework to determine environmental flows that optimally balance water requirements for ecosystems and human activities. This framework considers trade-offs between water use for ecosystem health and agricultural processes and considers temporal variations in hydrological processes. It comprises three separate models that (a) analyse water balance between agriculture and initial environmental flows, (b) identify outcomes of varying balances in water use, and (c) determine recommended environmental flows for sustainable water use. We applied the framework to a region downstream of the Yellow River in China. Based on our results, we recommend a water management plan that allocates more water to ecosystem services than is currently allocated and that does not increase predicted economic losses. In addition, we found that recommended flows change depending on the ecological objectives considered and whether technologies or methodologies that improve water-use efficiency are employed.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Pang, A., Sun, T., and Yang, Z., 2014. A framework for determining recommended environmental flows for balancing agricultural and ecosystem water demands. Hydrological Sciences Journal, 59 (3–4), 890–903.  相似文献   

2.
Ecosystem water-use efficiency (WUE), a ratio between gross ecosystem production (GEP) and water loss through evapotranspiration (ET) can be helpful for the assessment of coupled peatland carbon and water cycles under anthropogenic changes in the Athabasca oil sands region (AOSR) where extensive oil sands development has been occurring since the 1960's. As such, this study assessed multiyear peak growing season variability of WUE at four fens (poor treed, poor open, treed moderate-rich, open saline) near Fort McMurray using the eddy covariance technique combined with a set of environmental variables. Freshwater fens were characterized by WUE values within the range reported from other boreal wetlands while a saline fen had significantly lower values of WUE. Negative correlation (Rs < −0.55, p < 0.05) between WUE and net radiation was observed. Moisture conditions were responsible for interannual differences in WUE, whereby increasing WUE under wetter conditions was observed. However, such a pattern was offset by decreased air temperature (Tair) resulting in moisture oversupply. This study also revealed a negative effect of wildfire on WUE due to a prominent decline in GEP and a moderate decrease in ET. WUE can be useful for monitoring the functioning of natural and constructed fens, but a better understanding of WUE variability under a wide range of climatic conditions with respect to differences in vegetation is required.  相似文献   

3.
The water-use efficiency has direct impacts on the water consumption of agriculture production and is vital to water conservation at both local and regional extent. The agricultural water-use efficiency is a critical indicator that reflects the effective water allocation and water productivity improvement among different agricultural sectors. Taking the Heihe River Basin as the case study area, this study explores the changing trajectories of agricultural water use based on the input–output data of 2003–2012, and estimates the water-use efficiency with Data Envelopment Analysis, Malmquist Total Productivity Index and the decomposition of total factor productivity. Further, the influence of driving factors on the water-use efficiency is analyzed with the Tobit model. The research results indicate that the average agricultural water-use efficiency in different counties is all lower than 1 during 2003–2012, indicating that there is still improvement space in the agricultural water-use efficiency. In addition, there is obvious heterogeneity in the agricultural water-use efficiency among different counties, especially prior to 2009. The research results from the Tobit model indicate that agricultural investment and production, economic growth, industrial restructuring and agricultural plants structural adjustment have significant influence on the agricultural water-use efficiency. The research results can provide significant references for agricultural water-use management in the middle reaches of the Heihe River Basin and other similar regions in Northwest China.  相似文献   

4.
Stream water-use is essential for both agricultural and hydrological management and yet not many studies have explored its non-stationarity and nonlinearity with meteorological variables. This study proposed a deep-learning based model to estimate agricultural water withdrawal using hydro-meteorological variables, which projected the changes of agricultural water withdrawal influenced by climate change of future. The relationships between meteorological variables and stream water-use rate (WUR) were quantified using a deep belief network (DBN). The influences of precipitation, potential evapotranspiration, and monthly averaged WUR on the performance of the developed DBN model were tested. As a result, this DBN with potential evapotranspiration (PET) provided better performances than precipitation to estimate the WUR. The PET of multi-model scenarios for Representative Concentration Pathways 8.5 would be increased as time goes by, and thus leads to increase WUR estimated by DBN in three basins, located in South Korea during the future period. On the contrary, water availability expected to decrease compared to the current. Therefore, managing water-uses and improving efficiencies can be prepared for the change in agricultural water-use by climate change in the future.  相似文献   

5.
ABSTRACT

Understanding of the effect of basin water resources utilization on lake nutrients is helpful to prevent lake eutrophication and facilitate sustainable water resources management. In this study, a lake basin dualistic water cycle system is established to identify the environmental effect of lake water. Four water utilization indicators were chosen to build a driving relationship with the lake nutrients. Three different trophic lakes in Yunnan Province, China – Dianchi, Erhai and Fuxian – were selected to demonstrate the changes in basin water utilization, runoff, nutrient loads and water-use indicators for the period 2000–2015. In addition, the driving forces of water-use indicators to nutrients (total nitrogen and total phosphorus) were analysed by a general additive model. Finally, an optimized water utilization system for each lake basin is proposed. The research provides a practical tool for water resources and environmental management in lake basins.  相似文献   

6.
Abstract

The efficient planning and design of water networks, as well as the management and strategies of existing water supply systems, require accurate short-term water demand forecasts. In this study, a statistical model for the estimation of daily urban water consumption was developed. The model was applied to analyse and forecast the daily water consumption in the main district of Beijing, China, from 2006 to 2010. The model exhibited good performance with a coefficient of determination, R2, greater than 0.9 in both the calibration and validation periods. The results indicate that: (a) the 7-day moving average temperature is an efficient variable that can be used to depict water-use variation in a year; (b) a daily maximum temperature of 31.1°C and the occurrence of precipitation are two thresholds of water-use behaviour; and (c) the current day’s water consumption has a strong correlation with the consumption of one, two and seven days ago.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Zhang, D.W., et al., 2013. Statistical interpretation of the daily variation of urban water consumption in Beijing, China. Hydrological Sciences Journal, 59 (1), 181–192.  相似文献   

7.
Water quality management is a significant item in the sustainable development of wetland system, since the environmental influences from the economic development are becoming more and more obvious. In this study, an inexact left-hand-side chance-constrained fuzzy multi-objective programming (ILCFMOP) approach was proposed and applied to water quality management in a wetland system to analyze the tradeoffs among multiple objectives of total net benefit, water quality, water resource utilization and water treatment cost. The ILCFMOP integrates interval programming, left-hand-side chance-constrained programming, and fuzzy multi-objective programming within an optimization framework. It can both handle multiple objectives and quantify multiple uncertainties, including fuzziness (aspiration level of objectives), randomness (pollutant release limitation), and interval parameters (e.g. water resources, and wastewater treatment costs). A representative water pollution control case study in a wetland system is employed for demonstration. The optimal schemes were analyzed under scenarios at different probabilities (p i , denotes the admissible probability of violating the constraint i). The optimal solutions indicated that, most of the objectives would decrease with increasing probability levels from scenarios 1 to 3, since a higher constraint satisfaction probability would lead to stricter decision scopes. This study is the first application of the ILCFMOP model to water quality management in a wetland system, which indicates that it is applicable to other environmental problems under uncertainties.  相似文献   

8.
Water resources provide the foundation for human development and environmental sustainability. Water shortage occurs more or less in some regions, which usually causes sluggish economic activities, degraded ecology, and even conflicts and disputes over water use sectors. Game theory can better reflect the behaviors of involved stakeholders and has been increasingly employed in water resources management. This paper presents a framework for the allocation of river basin water in a cooperative way. The proposed framework applies the TOPSIS model combined with the entropy weight to determine stakeholders’ initial water share, reallocating water and net benefit by using four solution concepts for crisp and fuzzy games. Finally, the Fallback bargaining model was employed to achieve unanimous agreement over the four solution concepts. The framework was demonstrated with an application to the Dongjiang River Basin, South China. The results showed that, overall, the whole basin gained more total benefits when the players participated in fuzzy coalitions rather than in crisp coalitions, and \(\left\{ {NHS_{Fuzzy} \,and\, SV_{Crisp} } \right\}\) could better distribute the total benefit of the whole basin to each player. This study tested the effectiveness of this framework for the water allocation decision-making in the context of water management in river basins. The results provide technical support for water right trade among the stakeholders at basin scale and have the potential to relieve water use conflicts of the entire basin.  相似文献   

9.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

10.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

11.
Partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T) in wetlands is important for understanding the hydrological processes in wetlands and the contribution of wetland ET to local and regional water cycling and for designing effective wetland management strategies. Stable water isotopes are useful in the application of ET partitioning through the evaluation of the isotopic compositions of E (δE), T (δT), and ET (δET) obtained from observation or modelling methods. However, this approach still suffers from potentially large uncertainties in terms of estimating the isotopic endmembers. In this study, we modified the traditional isotope‐based ET partitioning methods to include leaf‐level biological constraints to separately estimate the relative contributions of T from Scirpus triqueter and Phragmites australis and the relative contributions of E from the standing surface water in a semiarid marsh wetland in northeastern China. The results showed that although the δT values of Striqueter and Paustralis were rather similar, the mean δT values of the 2 species were different from the values of δE, making it possible to distinguish the relative contributions of E and T through the use of isotopes. The simulation of leaf water using a non‐steady‐state model indicated obvious deviations in leaf water enrichment (δLb) from isotopic steady states for both species, especially during early mornings and evenings when relative humidity was highest. The isotopic mass balance showed that E accounted for approximately 60% of ET, and T from Striqueter and Paustralis each contributed approximately 20% to ET; this implied that the transpiration of one reed was equivalent to that of 5.25 individuals of Striqueter. Using the estimated ratio of T to ET and the measured leaf transpiration, the total ET was estimated to be approximately 10 mm day?1. Using the NSS‐Tr method, the estimated ET was higher than the water loss calculated from the water level gauge. This indicated that the river water and surrounding groundwater were the sources of the marsh wetland, with a supply rate of 8.3 mm day?1.  相似文献   

12.
Macro-evolution is a new kind of high-level species evolution inspired by the dynamics of species extinction and diversification at large time scales. Immune algorithms are a set of computational systems inspired by the defense process of the biological immune system. By taking advantage of the macro-evolutionary algorithm and immune learning of artificial immune systems, this article proposes a macro-evolutionary multi-objective immune algorithm (MEMOIA) for optimizing multi-objective allocation of water resources in river basins. A benchmark test problem, namely the Viennet problem, is utilized to evaluate the performance of the proposed new algorithm. The study indicates that the proposed algorithm yields a much better spread of solutions and converges closer to the true Pareto frontier compared with The Non-dominated Sorting Genetic Algorithm and Improving the Strength Pareto Evolutionary Algorithm. MEMOIA is applied to a water allocation problem in the Dongjiang River basin in southern China, with three objectives named economic interests (OF 1), water shortages (OF 2) and the amount of organic pollutants in water (OF 3). The results demonstrate the capabilities of MEMOIA as well as its suitability as a viable alternative for enhanced water allocation and management in a river basin.  相似文献   

13.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   

14.
This study investigated the effects of clear-cutting and the meteorological and physiological factors on forest evapotranspiration (ET), by using the water-budget method in the Kamabuchi experimental watershed (KMB; 38° 56′ 21″ N, 140° 15′ 58″ E) in northern Japan. Meteorological and discharge data collected during no-snow periods (from June to October) from 1939 were used to compare ET in three sub-watersheds: No. 1, where the forest had been left undisturbed, and No. 2 and No. 3, where Cryptomeria japonica was planted after clear-cutting. Paired watershed experiments revealed that clear-cutting caused ET to decrease by approximately 100 mm yr−1, and this reduction continued for more than 20 years, even after C. japonica was planted. ET fluctuated similarly across all watersheds, regardless of clear-cutting or planting. This fluctuation is mainly caused by solar radiation and temperature. Intrinsic water-use efficiency (iWUE) calculated using δ13C of tree-ring cellulose in C. japonica increased due to elevated atmospheric CO2 concentration. We estimated annual carbon fixation in a single tree as the annual net photosynthesis (A). Subsequently, transpiration (E) was calculated from the relationship between iWUE and A. The results showed that A and E per tree increased as the tree grew older; however, the trees' responses to increasing ca suppress the increase in ET. Moreover, the fluctuation of ET from the watershed was small compared to the fluctuation of P during the observation periods because the increase and decrease in E and interception loss complemented each other.  相似文献   

15.
Knowledge of the declination and inclination of the total and induced magnetization vectors is normally required for the interpretation and analysis of magnetic anomalies. A new method of estimating the direction of the total magnetization vector of magnetized rocks from magnetic anomalies is proposed. The unknown declination and inclination (D*T and I*T) can be found by applying a reduction-to-the-pole operator to the measured anomalies for different couples of total magnetization direction parameters (DT and IT) and by observing the variation of the anomaly minimum as a function of both DT and I*T.and D*T are estimated using the maximum of this function. Comparing our method to previous methods, one advantage is that our estimates are not zero-level dependent; furthermore, the method allows inclinations to be well estimated, with the same accuracy as declinations; finally declinations are not underestimated. Our method is applied to a real case and meaningful results are obtained; it is shown that the feasibility of the method is improved by removing the low-frequency components.  相似文献   

16.
Salinity is a vital factor that regulates leaf photosynthesis and growth of mangroves, and it frequently undergoes large seasonal and daily fluctuations creating a range of environments – oligohaline to hyperhaline. Here, we examined the hypotheses that mangroves benefit opportunistically from low salinity resulting from daily fluctuations and as such, mangroves under daily fluctuating salinity (FS) grow better than those under constant salinity (CS) conditions. We compared growth, salt accumulation, gas exchange, and chlorophyll fluorescence of leaves of mangrove Bruguiera gymnorhiza seedlings growing in freshwater (FW), CS (15 practical salinity units, PSU), and daily FS (0–30 PSU, average of 4.8 PSU) conditions. The traits of FS-treated leaves were measured in seedlings under 15 PSU. FS-treated seedlings had greater leaf biomass than those in other treatment groups. Moreover, leaf photosynthetic rate, capacity to regulate photoelectron uptake/transfer, and leaf succulence were significantly higher in FS than in CS treatment. However, leaf water-use efficiency showed the opposite trend. In addition to higher concentrations of Na+ and Cl, FS-treated leaves accumulated more Ca2+ and K+. We concluded that daily FS can enhance water absorption, photosynthesis, and growth of leaves, as well as alter plant biomass allocation patterns, thereby positively affecting B. gymnorhiza. Mangroves that experience daily FS may increase their adaptability by reducing salt build-up and water deficits when their roots are temporally subjected to low salinity or FW and by absorbing sufficient amounts of Na+ and Cl for osmotic adjustment when their roots are subsequently exposed to saline water.  相似文献   

17.
In this study, an inexact inventory-theory-based chance-constrained programming (IICP) model is proposed for planning waste management systems. The IICP model is derived through introducing inventory theory model into a general inexact chance-constrained programming framework. It can not only tackle uncertainties presented as both probability distributions and discrete intervals, but also reflect the influence of inventory problem in decision-making problems. The developed method is applied to a case study of long-term municipal solid waste (MSW) management planning. Solutions of total waste allocation, waste allocation batch and waste transferring period associated different risk levels of constraint violation are obtained. The results can be used to identify inventory-based MSW management planning with minimum system cost under various constraint-violation risks. Compared with the ICP model, the developed IICP model can more actually reflect the complexity of MSW management systems and provide more useful information for decision makers.  相似文献   

18.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Estimates of trends of climatic changes at basin and state scales are required for developing adaptation strategies related to planning, development and management of water resources. In the present study, seasonal and annual trends of changes in maximum temperature (T max), minimum temperature (T min), mean temperature (T mean), temperature range (T range), highest maximum temperature (H max) and lowest minimum temperature (L min) have been examined at the basin scale. The longest available records over the last century, for 43 stations covering nine river basins in northwest and central India, were used in the analysis. Of the nine river basins studied, seven showed a warming trend, whereas two showed a cooling trend. The Narmada and Sabarmati river basins experienced the maximum warming and cooling, respectively. The majority of basins in the study area show increasing trend in T range, H max and L min. Seasonal analysis of different variables shows that the greatest changes in T max and T mean were observed in the post-monsoon season, while T min experienced the greatest change in the monsoon season. This analysis provides scenarios of temperature changes which may be used for sensitivity analysis of water availability for different basins, and accordingly in planning and implementation of adaptation strategies.  相似文献   

20.
Abstract

A hydrological drought magnitude (M T ) expressed in standardized terms is predicted on annual, monthly and weekly time scales for a sampling period of T years in streamflow data from the Canadian prairies. The drought episodes are considered to follow the Poisson law of probability and, when coupled with the gamma probability distribution function (pdf) of drought magnitude (M) in the extreme number theorem, culminate in a relationship capable of evaluating the expected value, E(M T ). The parameters of the underlying pdf of M are determined based on the assumption that the drought intensity follows a truncated normal pdf. The E(M T ) can be evaluated using only standard deviation (σ), lag-1 autocorrelation (ρ) of the standardized hydrological index (SHI) sequence, and a weighting parameter Φ (ranging from 0 to 1) to account for the extreme drought duration (L T ), as well as the mean drought duration (Lm ), in a characteristic drought length (Lc ). The SHI is treated as standard normal variate, equivalent to the commonly-used standardized precipitation index. A closed-form relationship can be used for the estimation of first-order conditional probabilities, which can also be estimated from historical streamflow records. For all rivers, at the annual time scale, the value of Φ was found equal to 0.5, but it tends to vary (in the range 0 to 1) from river to river at monthly and weekly time scales. However, for a particular river, the Φ value was nearly constant at monthly and weekly time scales. The proposed method estimates E(M T ) satisfactorily comparable to the observed counterpart. At the annual time scale, the assumption of a normal pdf for drought magnitude tends to yield results in close proximity to that of a gamma pdf. The M T , when transformed into deficit-volume, can form a basis for designing water storage facilities and for planning water management strategies during drought periods.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Sharma, T.C. and Panu, U.S., 2013. A semi-empirical method for predicting hydrological drought magnitudes in the Canadian prairies. Hydrological Sciences Journal, 58 (3), 549–569.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号