首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 640 毫秒
1.
一直以来,海啸波特征作为表征海啸潜在破坏性的参数指标得到了广泛应用,特别是针对近场极端海啸事件造成的灾害来说,这种表征具有较好的适用性.然而总结分析历史海啸事件造成的损失发现:在远场近岸及港湾系统中,海啸诱导的强流却是造成损失的主要原因.陆架或港湾振荡导致海啸波幅快速升降诱发强流,可能促使港工设施受到威胁及损害,进而对海啸预警服务及海事应急管理提出了新的挑战.因此,全面理解与评估海啸在港湾中诱发的灾害特征,探索港湾中海啸流的数值模拟方法,发展针对港湾尺度的海啸预警服务指导产品尤为迫切.受限于海啸流验证数据的缺乏及准确模拟海啸流技术方法的诸多不确定性,大部分海啸数值模拟研究工作主要是针对水位特征的研究及验证,可能导致对港湾中海啸灾害危险性认识的曲解与低估.本研究基于非线性浅水方程,针对夏威夷群岛三个典型港湾建立了精细化海啸数值模型(空间分辨率达到10 m),并联合有限断层破裂模型计算分析了日本东北地震海啸在三个港湾及其邻近区域的海啸特征,波、流计算结果与实测结果吻合较好,精细化的海啸港湾模型模拟结果可信.模拟发现港湾中较小的波幅,同样可以产生强流.综合分析日本东北地震海啸波、流特征对输入条件不确定性的响应结果发现:港湾中海啸波-流能量的空间分布特征差异较大,这与港湾系统中海啸波的驻波特性相关;相比海啸波幅空间特征,海啸流特征具有更强的空间敏感性;海啸流时空分布特征对输入条件的不确定性响应比海啸波幅对这些不确定性的响应更强,海啸流的模拟与预报更有挑战性;不确定性对海啸流计算精度的影响会进一步传导放大港湾海啸流危险性的评估及对港工设施产生的应力作用的误差,合理的输入条件对海啸流的精确模拟至关重要.最后,希望通过本文的研究可以从海啸波-流特征角度更加全面认识近岸海啸灾害特征,拓展海啸预警服务的广度与深度,从而为灾害应急管理部门提供更加科学合理的辅助决策产品.  相似文献   

2.
快速准确的海啸源模型是近场海啸精确预警的关键.尽管目前还没有办法直接对其进行正演定量计算,但是可以通过多源地震、海啸观测数据进行反演或联合反演推算.不同的海啸源可能导致不同的预警结论,了解不同类型海啸源适用性、评估海啸源特征差异对近场海啸的影响,无论对于海啸预警还是海啸模拟研究尤为重要.本文评估分析了6种不同同震断层模型对2011年3月11日日本东北地震海啸近场数值预报的影响,重点对比分析了有限断层模型与均一滑动场模型对近场海啸产生、传播、淹没特征的影响及各自的误差.研究表明:近场海啸波能量分布主要取决于海啸源分布特征,特别是走向角的差异对海啸能量分布影响较大;有限断层模型对海啸灾害最为严重的39°N以南沿岸地区的最大海啸爬坡高度明显优于均一滑动场模型结果;综合对比DART浮标、GPS浮标及近岸潮位站共32个站次的海啸波幅序列结果发现有限断层模型整体平均绝对/相对误差比均一滑动场模型平均误差要低,其中Fujii海啸源的平均绝对/相对误差最小,分别是0.56m和26.71%.UCSB海啸源的平均绝对/相对误差次之.3个均一滑动场模型中USGSCMT海啸源模拟精度最高.相对于深海、浅海观测站,有限断层模型比均一滑动场模型对近岸观测站计算精度更高.海啸源误差具有显著的方向性,可能与反演所采用的波形数据的代表性有关;谱分析结果表明Fujii海啸源对在12至60min主频波谱的模拟要优于UCSB海啸源.海啸源中很难真实反映海底地震破裂过程,然而通过联合反演海啸波形数据推算海啸源的方法可以快速确定海啸源,并且最大限度的降低地震破裂过程与海啸产生的不确定性带来的误差.  相似文献   

3.
海啸是重要的海洋灾害之一,经常与地震灾害伴生,可以跨洋传播而不明显损失能量,登岸时波高骤升,对沿岸造成巨大的生命财产损失.21世纪以来,海啸灾害频发,引起世界各国对海啸成因机制及预警研究的重视.海啸数据对解析俯冲带大地震的破裂模型也有重要作用.文章对近年来有关海啸生成、传播、反演和预警的研究进展进行综述,分析现已取得的研究成果及存在的问题,讨论海啸预警策略的研究思路,并展望未来的海啸研究热点.  相似文献   

4.
北京时间2011年3月11日13时46分(05:46 UTC)日本东北部近海(38.3°N,142.4°E)发生Mw9.0级特大地震,此次地震的强度为日本近1200a来最强.随后环太平洋的数十个国家和地区的验潮站和海啸监测浮标均监测到了强震引发的越洋海啸,海啸奔袭23 h到达南美洲的智利沿岸;此次海啸除了对近场的日本东北部沿岸地区造成了巨大灾害,还对太平洋东岸的部分国家和地区造成了一定程度的影响.地震发生4 h后海啸波到达我国台湾东部沿海,6~8 h海啸波到达我国大陆东南沿海,受此影响我国发布了第一份海啸蓝色警报.本文利用海啸数值模型对此次地震海啸的产生、越洋传播过程进行了数值模拟,给出了海啸波能量在我国近海及泛太平洋区域分布特征;同时重点模拟分析了海啸波在日本及中国近海传播的波动特征,模拟结果与观测数据吻合良好.最后通过对数值模拟结果的分析,阐述了此次海啸对中国的影响,给出了潜在的日本地震海啸对中国的风险估计.  相似文献   

5.
越洋海啸的数值模拟   总被引:3,自引:0,他引:3  
破坏性海啸基本上都是越洋海啸,如1960年智利海啸、2004年苏门答腊海啸。越洋海啸的传播机制与近场海啸不同,进行数值模拟所采用的数学模型也不同。本文分析比较Boussinesq方程和线性浅水方程,选用后者作为进行越洋海啸数值模拟的数学模型,基于有限差分法,运用蛙跃格式求解微分方程。以2004年苏门答腊海啸作为算例,把计算结果与NOAA和NGDC的计算结果进行对比,验证本文的数学模型和计算方法的可靠性,为以后进一步的海啸危险性分析和海啸预警等研究工作提供技术支持。  相似文献   

6.
香港天文台在2012年引进了一套采用平行运算技术的海啸数值模型COrnell Multigrid COupled Tsunami(COMCOT)model,并与香港天文台在2010年初开始运行的地震数据处理及分析系统结合,利用后者探测及分析所得的太平洋或南海地震参数,模拟海啸传播过程和计算海啸在海面上及抵岸时的情况。并用日本311地震所产生的海啸为主要案例,加上过去香港曾经录得的海啸记录,验证COMCOT模拟海啸的能力,讨论COMCOT在香港天文台海啸预警工作上的应用。  相似文献   

7.
基于日本南海海槽地震活动性和历史海啸事件记载的分析,本文对日本南海海槽发生MW9.1罕遇地震情况下的海啸进行了数值模拟研究.结果表明:该地震可引发初始波幅约10 m的海啸,6个小时后传至浙江沿海,近岸各处波幅为1—2 m;8个小时后靠近上海海岸线,最大波幅约2 m,受地形影响局地爬高至近3 m;11个小时后抵达苏北黄海沿岸,预计波幅普遍在1 m左右.海啸的上岸高度与海岸附近的海深和海岸线的形态密切相关.我国近岸海域地形变化复杂,海湾众多,对海啸波有放大作用,该模拟结果可能比实际传播到近岸时偏小,因此综合评估日本海啸影响我国华东地区的规模m可达1—2级左右.一旦日本南海发生罕遇地震对我国的影响不容忽视,尤其遇上风暴潮与天文大潮叠加,则可能会造成一定程度的海啸灾害.   相似文献   

8.
日本、美国等国家在海啸危险性分析方面做了较多的研究,有相关的分析方法提出.我国地震海啸研究尚属于起步阶段,还没有形成公认的地震海啸危险性概率分析的思路和方法.简要综述了我国地震海啸的研究进展,借鉴我国已成熟的地震危险性分析方法,给出了地震海啸危险性概率分析的思路与方法,并对其关键技术问题进行了分析,为我国全面开展地震海...  相似文献   

9.
利用海啸数值模拟结果进行海底地震有限断层模型验证   总被引:2,自引:0,他引:2  
景惠敏  张怀  吴忠良  荀扬  王骥  石耀霖 《地震》2013,33(4):207-213
基于地震有限断层模型进行海啸的数值模拟通常被用来估计海啸的到时、 波高等, 另一方面, 海啸数值模拟的结果也可以作为限定条件用来考察同一地震的不同断层模型之间的相对合理性。 采用国际上各地震研究机构在震后各自得出的不同的有限断层模型作为海啸源, 使用基于二维浅水波方程的海啸传播模型对2011年日本东北地震海啸的传播过程进行模拟, 以海啸模拟所得到的沿岸浪高分布、 平均波高、 最大波高等与实际观测值相比较, 进而判断由各有限断层模型所计算得到的海啸中哪个结果与实际的海啸情况更为符合, 由此推断断层模型的相对合理性。  相似文献   

10.
基于强震台网的我国沿海海啸走时预警   总被引:4,自引:1,他引:4  
经济快速发展的中国沿海地区,面临着潜在海啸袭击危险。海啸传播走时分析是海啸预警系统的重要组成部分。本文基于强震台网提供的地震要素,从理论上讨论海啸预警时间计算方法。在球坐标系下,建立了远洋海啸传播模型,采用差分技术,实现远洋海啸传播数值模拟,首次针对我国主要城市进行了海啸走时计算,分析了我国沿海走时特点,指出了未来发生在太平洋的远洋海啸对我国的长江三角洲会有较大影响。本文计算海啸走时方法可以为我国建设的新一代基于数值海啸预警系统提供技术支持。  相似文献   

11.
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS, SIRM) and grain size (χARM, ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of ~7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.  相似文献   

12.
High-frequency (HF) surface wave radars provide the unique capability to continuously monitor the coastal environment far beyond the range of conventional microwave radars. Bragg-resonant backscattering by ocean waves with half the electromagnetic radar wavelength allows ocean surface currents to be measured at distances up to 200 km. When a tsunami propagates from the deep ocean to shallow water, a specific ocean current signature is generated throughout the water column. Due to the long range of an HF radar, it is possible to detect this current signature at the shelf edge. When the shelf edge is about 100 km in front of the coastline, the radar can detect the tsunami about 45 min before it hits the coast, leaving enough time to issue an early warning. As up to now no HF radar measurements of an approaching tsunami exist, a simulation study has been done to fix parameters like the required spatial resolution or the maximum coherent integration time allowed. The simulation involves several steps, starting with the Hamburg Shelf Ocean Model (HAMSOM) which is used to estimate the tsunami-induced current velocity at 1 km spatial resolution and 1 s time step. This ocean current signal is then superimposed to modelled and measured HF radar backscatter signals using a new modulation technique. After applying conventional HF radar signal processing techniques, the surface current maps contain the rapidly changing tsunami-induced current features, which can be compared to the HAMSOM data. The specific radial tsunami current signatures can clearly be observed in these maps, if appropriate spatial and temporal resolution is used. Based on the entropy of the ocean current maps, a tsunami detection algorithm is described which can be used to issue an automated tsunami warning message.  相似文献   

13.
The coast of California was significantly impacted by two recent teletsunami events, one originating off the coast of Chile on February 27, 2010 and the other off Japan on March 11, 2011. These tsunamis caused extensive inundation and damage along the coast of their respective source regions. For the 2010 tsunami, the NOAA West Coast/Alaska Tsunami Warning Center issued a state-wide Tsunami Advisory based on forecasted tsunami amplitudes ranging from 0.18 to 1.43 m with the highest amplitudes predicted for central and southern California. For the 2011 tsunami, a Tsunami Warning was issued north of Point Conception and a Tsunami Advisory south of that location, with forecasted amplitudes ranging from 0.3 to 2.5 m, the highest expected for Crescent City. Because both teletsunamis arrived during low tide, the potential for significant inundation of dry land was greatly reduced during both events. However, both events created rapid water-level fluctuations and strong currents within harbors and along beaches, causing extensive damage in a number of harbors and challenging emergency managers in coastal jurisdictions. Field personnel were deployed prior to each tsunami to observe and measure physical effects at the coast. Post-event survey teams and questionnaires were used to gather information from both a physical effects and emergency response perspective. During the 2010 tsunami, a maximum tsunami amplitude of 1.2 m was observed at Pismo Beach, and over $3-million worth of damage to boats and docks occurred in nearly a dozen harbors, most significantly in Santa Cruz, Ventura, Mission Bay, and northern Shelter Island in San Diego Bay. During the 2011 tsunami, the maximum amplitude was measured at 2.47 m in Crescent City Harbor with over $50-million in damage to two dozen harbors. Those most significantly affected were Crescent City, Noyo River, Santa Cruz, Moss Landing, and southern Shelter Island. During both events, people on docks and near the ocean became at risk to injury with one fatality occurring during the 2011 tsunami at the mouth of the Klamath River. Evaluations of maximum forecasted tsunami amplitudes indicate that the average percent error was 38 and 28 % for the 2010 and 2011 events, respectively. Due to these recent events, the California tsunami program is developing products that will help: (1) the maritime community better understand tsunami hazards within their harbors, as well as if and where boats should go offshore to be safe, and (2) emergency managers develop evacuation plans for relatively small “Warning” level events where extensive evacuation is not required. Because tsunami-induced currents were responsible for most of the damage in these two events, modeled current velocity estimates should be incorporated into future forecast products from the warning centers.  相似文献   

14.
On March 11, 2011 at 5:46:23 UTC (March 10 11:46:23 PM Galapagos Local Time), the Mw 9.0 Great East Japan Earthquake occurred near the Tohoku region off the east coast of Japan, spawning a Pacific-wide tsunami. Approximately 12,000 km away, the Galapagos Islands experienced moderate tsunami impacts, including flooding, structural damage, and strong currents. In this paper, we present observations and measurements of the tsunami effects in the Galapagos, focusing on the four largest islands in the archipelago; (from west to east) Isabela, Santiagio, Santa Cruz, and San Cristobal. Access to the tsunami affected areas was one of the largest challenges of the field survey. Aside from approximately ten sandy beaches open to tourists, all other shoreline locations are restricted to anyone without a research permit; open cooperation with the Galapagos National Park provided the survey team complete access to the Islands coastlines. Survey locations were guided by numerical simulations of the tsunami performed prior to the field work. This numerical guidance accurately predicted the regions of highest impact, as well as regions of relatively low impact. Tide-corrected maximum tsunami heights were generally in the range of 3–4 m with the highest runup of 6 m measured in a small pocket beach on Isla Isabela. Puerto Ayora, on Santa Cruz Island, the largest harbor in the Galapagos experienced significant flooding and damage to structures located at the shoreline. A current meter moored inside the harbor recorded relatively weak tsunami currents of less than 0.3 m/s (0.6 knot) during the event. Comparisons with detailed numerical simulations suggest that these low current speed observations are most likely the result of data averaging at 20-min intervals and that maximum instantaneous current speeds were considerably larger. Currents in the Canal de Itabaca, a natural waterway between Santa Cruz Island and a smaller island offshore, were strong enough to displace multiple 5.5-ton navigation buoys. Numerical simulations indicate that currents in the Canal de Itabaca exceeded 4 m/s (~8 knots), a very large flow speed for a navigational waterway.  相似文献   

15.
Tsunamis waves caused by submarine earthquake or landslide might contain large wave energy, which could cause significant human loss and property damage locally as well as in distant region. The response of three harbors located at the Pacific coast (i.e. Crescent City Harbor, Los Angeles/Long Beach Port, and San Diego Harbor) to six well-known tsunamis events generated (both near-field and far-field) between 2005 and 2011 are examined and simulated using a hybrid finite element numerical model in frequency domain. The model incorporated the effects of wave refraction, wave diffraction, partial wave reflection from boundaries, entrance and bottom energy dissipation. It can be applied to harbor regions with arbitrary shapes and variable water depth. The computed resonant periods or modes of oscillation for three harbors are in good agreement with the energy spectral analysis of the time series of water surface elevations recorded at tide gauge stations inside three harbors during the six tsunamis events. The computed wave induced currents based on the present model are also in qualitative agreement with some of the reported eye-witness accounts absence of reliable current data. The simulated results show that each harbor responded differently and significantly amplified certain wave period(s) of incident wave trains according to the shape, topography, characteristic dimensions and water depth of the harbor basins.  相似文献   

16.
The great Tohoku-oki earthquake of March 11, 2011 generated a devastating tsunami in the near field as well as substantial far-field effects throughout the Pacific Ocean. In New Zealand, the tsunami was widely observed and instrumentally recorded on an extensive array of coastal tidal gauges and supplemented by current velocity data from two sites. While the tsunami's first arrival was on the morning of March 12 in New Zealand, the strongest effects occurred throughout that afternoon and into the following day. Tsunami effects consisted primarily of rapid changes in water level and associated strong currents that affected numerous bays, harbors, tidal inlets and marine facilities, particularly on the northern and eastern shores of the North Island. The tsunami caused moderate damage and significant overland flooding at one location. The tsunami signal was clearly evident on tide gauge recordings for well over 2 days, clearly illustrating the extended duration of far field tsunami hazards. Real time analysis and modelling of the tsunami through the night of March 11, as the tsunami crossed the Pacific, was used as a basis for escalating the predicted threat level for the northern region of New Zealand. A comparison to recorded data following the tsunami shows that these real time prediction models were accurate despite the coarse near-shore bathymetry used in the assessment, suggesting the efficacy of such techniques for future events from far-field sources.  相似文献   

17.
Uncertainty related to the source parameters of earthquake can largely impact the tsunami-induced wave characteristics, especially in the case of near-field tsunami source. The combination of numerical simulations and historical eyewitness accounts can be used to better constrain those uncertainties. In the present study, we propose a Bayesian procedure to infer (i.e. learn) the probability distribution of the source parameters of the earthquake. The strategy is based on the combination of: (1) kriging-based metamodelling techniques to overcome the high computation time cost of the numerical simulator; and (2) Approximate Bayesian Computation (ABC) procedure to perform the Bayesian inference. The procedure is applied to the Ligurian (North West of Italy) 1887 tsunami case, for which tsunami-induced sea surface elevations at the coast have been reported at four locations, namely Marseille, Imperia, Diano-Marina and Genoa. The kriging metamodels are trained using only 300 long-running numerical simulations that were performed using the FUNWAVE-TVD code. Contrary to recent inversion exercises that can benefit from current modern observation networks (like tide gauges, sea bottom pressure gauges, GPS-mounted buoys), the case of historical tsunami like Liguria is complicated by the imprecision and scarcity of the observations: this is accounted for by conducting the combined ABC-kriging procedure a large number of times (i.e. 1000); each time a new set of observations being randomly generated to account for this observational error. The combined analysis of the inference results and of the observation uncertainty reveals that: (1) the coseismic slip is the most important source parameter with a very peaky density distribution around low values ranging from 0.3 to 0.6 m; (2) The fault width has a peaky density distribution around low values ranging from 10 to 12 km; (3) The rake and azimuth distribution only slightly deviate from the uniform prior, hence indicating a low influence of those parameters; (4) The bi-modal distribution of the dip is also evidenced.  相似文献   

18.
This paper presents the results from an extensive field data collection effort following the December 26, 2004 earthquake and tsunami in Banda Aceh, Sumatra. The data were collected under the auspices of TSUNARISQUE, a joint French-Indonesian program dedicated to tsunami research and hazard mitigation, which has been active since before the 2004 event. In total, data from three months of field investigations are presented, which detail important aspects of the tsunami inundation dynamics in Banda Aceh. These include measurements of runup, tsunami wave heights, flow depths, flow directions, event chronology and building damage patterns. The result is a series of detailed inundation maps of the northern and western coasts of Sumatra including Banda Aceh and Lhok Nga. Among the more important findings, we obtained consistent accounts that approximately ten separate waves affected the region after the earthquake; this indicates a high-frequency component of the tsunami wave energy in the extreme near-field. The largest tsunami wave heights were on the order of 35 m with a maximum runup height of 51 m. This value is the highest runup value measured in human history for a seismically generated tsunami. In addition, our field investigations show a significant discontinuity in the tsunami wave heights and flow depths along a line approximately 3 km inland, which the authors interpret to be the location of the collapse of the main tsunami bore caused by sudden energy dissipation. The propagating bore looked like a breaking wave from the landward side although it has distinct characteristics. Patterns of building damage are related to the location of the propagating bore with overall less damage to buildings beyond the line where the bore collapsed. This data set was built to be of use to the tsunami community for the purposes of calibrating and improving existing tsunami inundation models, especially in the analysis of extreme near-field events.  相似文献   

19.
The highly vulnerable Pacific southwest coast of Mexico has been repeatedly affected by local, regional and remote source tsunamis. Mexico presently has no national tsunami warning system in operation. The implementation of key elements of a National Program on Tsunami Detection, Monitoring, Warning and Mitigation is in progress. For local and regional events detection and monitoring, a prototype of a robust and low cost high frequency sea-level tsunami gauge, sampling every minute and equipped with 24 hours real time transmission to the Internet, was developed and is currently in operation. Statistics allow identification of low, medium and extreme hazard categories of arriving tsunamis. These categories are used as prototypes for computer simulations of coastal flooding. A finite-difference numerical model with linear wave theory for the deep ocean propagation, and shallow water nonlinear one for the near shore and interaction with the coast, and non-fixed boundaries for flooding and recession at the coast, is used. For prevention purposes, tsunami inundation maps for several coastal communities, are being produced in this way. The case of the heavily industrialized port of Lázaro Cárdenas, located on the sand shoals of a river delta, is illustrated; including a detailed vulnerability assessment study. For public education on preparedness and awareness, printed material for children and adults has been developed and published. It is intended to extend future coverage of this program to the Mexican Caribbean and Gulf of Mexico coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号