首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geodynamic evolution of Korea: A view   总被引:2,自引:0,他引:2  
Abstract Evidence for South Korean Palaeozoic geodynamic evolution is restricted to the Ogcheon Belt, which is a complex polycyclic domain forming the boundary between the Precambrian Gyeonggi Block to the northwest and the Ryeongnam Block to the southeast. Two independent sub-zones can be distinguished: the Taebaeksan Zone to the northeast and the Ogcheon Zone sensu stricto. The Taebaeksan Zone and Ryeongnam Block display characteristic features of the North China palaeocontinent. This domain remained relatively stable during the Palaeozoic. In contrast, the Ogcheon Belt s. s. is a highly mobile zone that belongs to the South China palaeocontinent and corresponds to a rift that opened during the Early Palaeozoic. In lowermost Devonian times, the rift basin was closed and the Ogcheon Belt was structured in a pile of nappes. From the lack of suture in the Ogcheon Belt it can be inferred that the Gyeonggi Block belongs to the South China palaeocontinent. Thus, the boundary between the North China and South China blocks should be located to the north of Gyeonggi Block, that is, in the Palaeozoic Imjingang Belt. From the Middle Carboniferous, sedimentation started again on a weakly subsiding paralic platform located in the hinterland of the Late Palaeozoic orogen of southwest Japan. In the Late Carboniferous, increasing subsidence recorded extensional tectonics related to the opening of the Yakuno Oceanic Basin (southwest Japan). In the Middle Permian, the end of marine influences in the platform and emplacement of terrestrial coal measures, may be correlated with the closure of the oceanic area and subsequent ophiolite obduction. In Late Permian to Early Triassic times, the Honshu Block (the eastern palaeomargin of the Yakuno Basin) collided with Sino-Korea. Post-collisional intracontinental tectonics reached the Ogcheon Belt in the Middle Triassic (Songnim tectonism). Ductile dextral shear zones associated with synkinematic granitoids were emplaced in the southwest of the belt. In the Upper Triassic, the late stages of the intracontinental transcurrent tectonics generated narrow intramontane troughs (Daedong Supergroup). The Daedong basins were deformed during two tectonic events, in the Middle (?) and Late Jurassic. The Upper Jurassic to Lower Cretaceous basins (Gyeongsang Supergroup), that are controlled by left-lateral faults, may have resulted from the same tectonic event.  相似文献   

2.
Paleokarst systems are one of the major factors resulting in carbonate reservoir heterogeneity and compartmentalization. Nevertheless, few effective workflows have been proposed to map the 3D distribution of such systems. We describe a detailed seismic characterization approach integrating core, well log and rock physics analysis, to reveal a complex subsurface paleokarst system in the San Andres Formation, Permian basin, West Texas. In the area of high volume production, the collapsed paleokarst system is characterized by irregularly developed crackle and fracture breccias, mosaic breccias and cave fillings in the Upper San Andres Formation, which are delineated using seismic acoustic impedance. Along the transition from platform to basin, the paleokarst system is marked by a linear collapse including sags and small vertical faults that are recognizable in seismic imaging. Production data indicates that tight paleokarst zones cause reservoir compartmentalization and influence fluid communication between wells. The complex paleokarst system development is explained using a carbonate platform hydrological model, an outcrop analogue similar to modern marine hydrological environments within carbonate islands. Our method of model development for complex subsurface paleokarst systems may be applicable to other paleoenvironments.  相似文献   

3.
The Torinosu Limestone represents carbonate platform deposits in a foreland basin, the sedimentary setting of which is highly different from those of well‐known Late Jurassic reefs in the western Tethys that developed on shelf areas of continental margins and intra‐Tethyan platforms. Sedimentological and paleontological analyses were conducted on a 55.5 m‐thick Upper Jurassic–Lower Cretaceous (Tithonian–Berriasian) carbonate sequence (Torinosu Limestone) at the Eastern Hitotsubuchi Quarry, Kochi Prefecture, Southwest Japan. The carbonate sequence is composed of two sections that are separated by a subaerial exposure surface. Two and three depositional units have been defined in the lower and upper sections, respectively, based on changes in lithology and the biotic composition of the carbonates; they are numbered from 1 to 5, in ascending order. Calcified demosponges (stromatoporoids and a chaetetid Chaetetopsis crinita) are abundant in three units (2, 3, and 5), in which microencrusters (mostly Lithocodium aggregatum and Bacinella irregularis) and microbialites are also common to abundant. Although most of them are para‐allochthonous, in‐situ branching stromatoporoids are found on and above the subaerial exposure surface (unit 3). Corals are less common, poorly diverse, and primarily represented by the family Microsolenidae. Siliciclastic grains occur in all units, but they are particularly common in units 1 and 4. The co‐occurrence of the LithocodiumBacinella association, which is typical of oligotrophic or moderately mesotrophic shallow‐water environments, with microsolenids, which are indicative of high nutrient levels and/or low‐light intensity due to high turbidity, suggests repeated changes in nutrient levels associated with terrigenous input. Based on lithology, biotic composition, and succession, we infer that sea‐level changes and related terrigenous input controlled the sedimentary environment of the studied carbonate sequence.  相似文献   

4.
Bathymetric mapping and observations of the seafloor using a remotely operated vehicle (ROV, Hyper‐Dolphin 3K) were carried out on the slopes of the Miyako‐Sone submarine platform, east of Miyako‐jima in the Ryukyu Islands, northwestern Pacific Ocean. The bathymetric map indicates that terraces are present at water depths of approximately 140 m, 330 m, 400 m, and 680 m on the northwestern slope of the platform. A number of NW–SE trending lineaments, probably faults, extend perpendicular to the axis of the Ryukyu Island Arc. Two ROV surveys were conducted at water depths ranging from 519 m (on the slope) to 121 m (shallowest part of the platform). The surveys revealed that well‐indurated carbonate rocks are exposed at terrace margins and on upper slopes, and that the lower slopes are covered with modern sediments consisting of unconsolidated, coarse‐sand‐sized bioclastic carbonates. Calcareous nannofossils from the well‐indurated carbonate rocks indicate a Middle–Late Pleistocene age, which suggests that the rocks correlate with the Quaternary reef and fore‐reef deposits of the Ryukyu Group (Ryukyu Limestone) on the Ryukyu Islands. No siliciclastic deposits corresponding to the upper Miocene–lower Pleistocene Shimajiri Group (as exposed on Okinawa‐jima and Miyako‐jima islands) were recovered during the surveys. Coeval well‐indurated carbonate rocks, all of which formed in a similar sedimentary environment, have been downthrown towards the west due to displacements on the western sides of normal faults. Subsidence of the Miyako‐Sone submarine platform was the result of large vertical displacements on such normal faults. The timing of initial subsidence cannot be tightly constrained, but the presence of the youngest limestone at progressively lower levels towards the west suggests the subsidence continued until after 0.265 Ma.  相似文献   

5.
This study investigates the types of subaqueous deposits that occur when hot pyroclastic flows turbulently mix with water at the shoreline through field studies of the Znp marine tephra in Japan and flume experiments where hot tephra sample interacted with water. The Znp is a very thick, pumice-rich density current deposit that was sourced from subaerial pyroclastic flows entering the Japan Sea in the Pliocene. Notable characteristics are well-developed grain size and density grading (lithic-rich base, pumice-rich middle, and ash-rich top), preponderance of sedimentary lithic clasts picked up from the seafloor during transport, fine ash depletion in coarse facies, and presence of curviplanar pumice clasts. Flume experiments provide a framework for interpreting the origin and proximity to source of the Znp tephra. On contact of hot tephra sample with water, steam explosions produced a gas-supported pyroclastic density current that advanced over the water while a water-supported density current was produced on the tank floor from the base of a turbulent mixing zone. Experimental deposits comprise proximal lithic breccia, medial pumice breccia, and distal fine ash. Experiments undertaken with cold, water-saturated slurries of tephra sample and water did not produce proximal lithic breccias but a medial basal lithic breccia beneath an upper pumice breccia. Results suggest the characteristics and variations in Znp facies were strongly controlled by turbulent mixing and quenching, proximity to the shoreline, and depositional setting within the basin. Presence of abundant curviplanar pumice clasts in submarine breccias reflects brittle fracture and dismembering that can occur during fragmentation at the vent or during quenching. Subsequent transport in water-supported pumiceous density currents preserves the fragmental textures. Careful study is needed to distinguish the products of subaerial versus subaqueous eruptions.  相似文献   

6.
A broad zone of dominantly subaerial silicic volcanism associated with regional extensional faulting developed in southern South America during the Middle Jurassic, contemporaneously with the initiation of plutonism along the present Pacific continental margin. Stratigraphic variations observed in cross sections through the silicic Jurassic volcanics along the Pacific margin of southernmost South America indicate that this region of the rift zone developed as volcanism continued during faulting, subsidence and marine innundation. A deep, fault-bounded submarine trough formed near the Pacific margin of the southern part of the volcano-tectonic rift zone during the Late Jurassic. Tholeiitic magma intruded within the trough formed the mafic portion of the floor of this down-faulted basin. During the Early Cretaceous this basin separated an active calc-alkaline volcanic arc, founded on a sliver of continental crust, from the then volcanically quiescent South American continent. Geochemical data suggest that the Jurassic silicic volcanics along the Pacific margin of the volcano-tectonic rift zone were derived by crustal anatexis. Mafic lavas and sills which occur within the silicic volcanics have geochemical affinities with both the tholeiitic basalts forming the ophiolitic lenses which are the remnants of the mafic part of the back-arc basin floor, and also the calc-alkaline rocks of the adjacent Patagonian batholith and their flanking lavas which represent the eroded late Mesozoic calc-alkaline volcanic arc. The source of these tholeiitic and calc-alkaline igneous rocks was partially melted upper mantle material. The igneous and tectonic processes responsible for the development of the volcano-tectonic rift zone and the subsequent back-arc basin are attributed to diapirism in the upper mantle beneath southern South America. The tectonic setting and sequence of igneous and tectonic events suggest that diapirism may have been initiated in response to subduction.  相似文献   

7.
The Kachchh Basin and the Jaisalmer Basin are two neighboring Mesozoic sedimentary basins at the western margin of the Indian craton. The Jurassic succession of the Kachchh Basin is more complete and more fossiliferous than that of the Jaisalmer Basin. Consequently, intrabasinal correlation of the sedimentary units has been possible in the Kachchh Basin, but not in the Jaisalmer Basin. However, some marker beds existing in the Kachchh Basin can be recognized also in the Jaisalmer Basin. Ammonite evidence shows that they are time-equivalent. The following four units form marker intervals in both basins: (1) the pebbly rudstone unit with Isastrea bernardiana and Leptosphinctes of the Kaladongar Formation (Kachchh Basin) and the Isastrea bernardiana-bearing rudstone of the Jaisalmer Formation (Jaisalmer Basin) both represent transgressive systems tract deposits dated as Late Bajocian; (2) bioturbated micrites with anomalodesmatan bivalves within the Goradongar Yellow Flagstone Member (Kachchh Basin) and bioturbated units in the Fort Member (Jaisalmer Basin) represent maximum flooding zone deposits of the Middle to Late Bathonian; (3) trough-crossbedded, sandy pack- to grainstones of the Raimalro Limestone Member (Kachchh Basin) and the basal limestone-sandstone unit of the Kuldhar section of the Jaisalmer Formation (Jaisalmer Basin) correspond to Late Bathonain transgressive systems tract deposits; and (4) ferruginous ooid-bearing carbonates with hardgrounds of the Dhosa Oolite member (Kachchh Basin) and the middle part of the Jajiya Member (Jaisalmer Basin) are Oxfordian transgressive systems tract deposits. The fact that in both basins similar biofacies prevailed during certain time intervals demonstrates a common control of their depositional history. As the two basins represent different tectonic settings, the most likely controlling factors were the relative sea-level changes produced by eustatic processes, a common subsidence history of the northwestern margin of the Indian craton, and the paleoclimate.  相似文献   

8.
In the Ordovician, a carbonate platform system grading from the platformal interior eastwards to basin was developed in the Tazhong area of the Tarim Basin, and the study column is located in the place where the paleoslope occurred. The isotope compositions of the carbonates there are thus considered as having reflected those of simultaneous sea waters in view of its good connection with the open seas. The carbon and strontium isotope compositions of the Ordovician carbonates in the Tazhong area are analyzed, and their relationships to the sea-level fluctuations are discussed as well. Studies have revealed that the carbon isotope composition is related positively with the sea-level fluctuations, whereas an opposing situation occurs to the strontium isotope variation. Similar responses of carbon and strontium isotope compositions to the sea-level fluctuations are reported elsewhere in the world, suggesting that the Ordovician sea-level fluctuations of the Tarim Basin were of eustatic implication.  相似文献   

9.
A high-resolution seismic-reflection survey of the area between Kos and Tilos islands is used to constrain the nature of the Kos Plateau Tuff (KPT) eruption and post-eruptive subsidence. A unique acoustically incoherent unit tens of metres thick at a subbottom depth of 15–35 m is recognised throughout the West Kos basin, which lies between Pachia, Yali and Kos. It commonly unconformably overlies folded, stratified sediment, but in places is concordant with stratified sediment more than 100 m thick. In places south of Kos, the acoustically incoherent unit is overlain by an unconformity and irregularly stratified sediment interpreted as terrestrial or shallow marine. Southeast of Nisyros, a correlative acoustically incoherent unit overlies a planar marine transgression erosion surface that extends almost to Tilos. The stratigraphic level of this unit is dated by comparison with the global eustatic sea-level record and the presence of major transgressive erosion surfaces on adjacent continental shelves, constrained by regional sedimentation rates, and indicates that it is of similar age to the Kos Plateau Tuff eruption. The relationship of this unit to coastal erosion surfaces, and its absence in many areas where seismic-reflection profiles show continuous marine sedimentation, suggests that it is a pyroclastic deposit of subaerial, or at most very shallow marine, origin from the Kos Plateau Tuff eruption. This presence of transgressive unconformities implies that a coastal plain or shallow sea extended southeast of Nisyros to Tilos and the Datça peninsula, and thus it is unlikely that pyroclastic flows crossed large stretches of deep water towards Tilos, as proposed by Allen and Cas (Allen, S.R., Cas, R.A.F., 2001. Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull. Volcanol. 62, 441-456). Late Pleistocene tectonic subsidence has taken place throughout the whole region between Kos and Tilos, in places at an average rate of at least 3 mm/a.The older dacites of Pyrgousa and Pachia and the post-KPT volcanics of Yali, Strongili and Nisyros lie on a NE–SW-trending lineament marked by major faults and abrupt changes in bathymetry. This NE–SW faulting was initiated in the early Pleistocene and parallels prominent lineaments in the east Cretan Sea. ENE–WSW sinistral strike-slip faulting initiated in the middle Pleistocene in the area from Santorini to Kos would have produced extension on this older lineament, playing a major role in channelling magma to the surface and permitting the ingress of water to the magma conduit.  相似文献   

10.
Abstract Coral reefs are tropic to subtropic, coastal ecosystems comprising very diverse organisms. Late Quaternary reef deposits are fossil archives of environmental, tectonic and eustatic variations that can be used to reconstruct the paleoclimatic and paleoceanographic history of the tropic surface oceans. Reefs located at the latitudinal limits of coral‐reef ecosystems (i.e. those at coral‐reef fronts) are particularly sensitive to environmental changes – especially those associated with glacial–interglacial changes in climate and sealevel. We propose a land and ocean scientific drilling campaign in the Ryukyu Islands (the Ryukyus) in the northwestern Pacific Ocean to investigate the dynamic response of the corals and coral‐reef ecosystems in this region to Late Quaternary climate and sealevel change. Such a drilling campaign, which we call the COREF (coral‐reef front) Project, will allow the following three major questions to be evaluated: (i) What are the nature, magnitude and driving mechanisms of coral‐reef front migration in the Ryukyus? (ii) What is the ecosystem response of coral reefs in the Ryukyus to Quaternary climate changes? (iii) What is the role of coral reefs in the global carbon cycle? Subsidiary objectives include (i) the timing of coral‐reef initiation in the Ryukyus and its causes; (ii) the position of the Kuroshio current during glacial periods and its effects on coral‐reef formation; and (iii) early carbonate diagenetic responses as a function of compounded variations in climate, eustacy and depositional mineralogies (subtropic aragonitic to warm‐temperate calcitic). The geographic, climatic and oceanographic settings of the Ryukyu Islands provide an ideal natural laboratory to address each of these research questions.  相似文献   

11.
Southern Central America is a Late Mesozoic/Cenozoic island arc that evolved in response to the subduction of the Farallón Plate beneath the Caribbean Plate in the Late Cretaceous and, from the Oligocene, the Cocos and Nazca Plates. Southern Central America is one of the best studied convergent margins in the world. The aim of this paper is to review the sedimentary and structural evolution of arc‐related sedimentary basins in southern Central America, and to show how the arc developed from a pre‐extensional intra‐oceanic island arc into a doubly‐vergent, subduction orogen. The Cenozoic sedimentary history of southern Central America is placed into the plate tectonic context of existing Caribbean Plate models. From regional basin analysis, the evolution of the southern Central American island arc is subdivided into three phases: (i) non‐extensional stage during the Campanian; (ii) extensional phase during the Maastrichtian‐Oligocene with rapid basin subsidence and deposition of arc‐related, clastic sediments; and (iii) doubly‐vergent, compressional arc phase along the 280 km long southern Costa Rican arc segment related to either oblique subduction of the Nazca plate, west‐to‐east passage of the Nazca–Cocos–Caribbean triple junction, or the subduction of rough oceanic crust of the Cocos Plate. The Pleistocene subduction of the Cocos Ridge contributed to the contraction but was not the primary driver. The architecture of the arc‐related sedimentary basin‐fills has been controlled by four factors: (i) subsidence caused by tectonic mechanisms, linked to the angle and morphology of the incoming plate, as shown by the fact that subduction of aseismic ridges and slab segments with rough crust were important drivers for subduction erosion, controlling the shape of forearc and trench‐slope basins, the lifespan of sedimentary basins, and the subsidence and uplift patterns; (ii) subsidence caused by slab rollback and resulting trench retreat; (iii) eustatic sea‐level changes; and (iv) sediment dispersal systems.  相似文献   

12.
Geologic mapping and subsurface lithostratigraphic investigations were carried out in the Khao Pun area (4 km2), central Thailand. More than 250 hand specimens, 70 rock slabs, and 70 thin sections were studied in conjunction with geochemical data in order to elucidate paleoenvironments and tectonic setting of the Permian marine sedimentary sequences. This sedimentary succession (2485 m thick) was re‐accessed and re‐grouped into three lithostratigraphic units, namely, in ascending order, the Phu Phe, Khao Sung and Khao Pun Formations. The Lower to lower Upper Permian sedimentary facies indicated the transgressive/regressive succession of shelf sea/platform environment to pelagic or abyssal environment below the carbonate compensation depth. The sedimentological and paleontological aspects, together with petrochemical and lithological points of view, reveal that the oldest unit might indicate an Early Permian sheltered shallow or lagoonal environment. Then the depositional basin became deeper, as suggested by the prolonged occurrence of bedded chert‐limestone intercalation with the local exposure of shallower carbonate build‐up. Following this, the depositional environment changed to pelagic deposition, as indicated by laminated radiolarian (e.g. Follicucullus sp.) cherts. This cryptic evidence might indicate the abyssal environment during middle Middle to early Late Permian; whereas, previous studies advocated shelf‐facies environments. Following this, the depositional condition might be a major regression on the microcontinent close to Indochina, from the minor transgressive/regressive cycles that developed within a skeletal barrier, and through the lagoon with limited circulational and anaerobic conditions, on to the tidal flat to the sheltered lagoon without effective land‐derived sediments.  相似文献   

13.
The Tertiary Kuqa depression is a foreland basin generated by flexural subsidence resulting from the southward thrusting of the southern Tianshan Mountains. Tertiary basin fills of the depression can be classified into four tectonic sequences bounded by gentle angular unconformities. The sequences are composed of two parts, the lower transgressive and the upper progradational successions, which are separated by a regional maximum transgressive surface. The development of these sequences is attributed to the foreland tectonic process from flexural subsidence caused by thrust loading to rebounded uplift due to the erosion and stress release. The generation of the angular unconformities defining the tectonic sequences has been interpreted as the result of the rebounded uplift and the following thrusting. It has been found that there is a significant difference in depositional pattern between the northeastern and the northwestern margins. The relatively strong thrusting and mountain building occurring along the northwestern margin resulted in the development of thick-bedded alluvial fan and angular unconformities. The northeastern margin, in contract, lacks thick alluvial fan accumulation due to weak thrusting. This difference is likely related to the pre-existing east-west partition of the basin basement.  相似文献   

14.
Makran is one of the largest accretionary prisms on Earth, formed by the closure of the Neotethys ocean which is now represented by its remnant, the Gulf of Oman. Tectonic evolution of the Makran island‐arc system is explored within the context of a north dipping subduction zone, with temporal variations in slab dip arrangement. In a Middle Jurassic–Early Paleocene steep slab dip arrangement, the Mesozoic magmatic arc and the Proto‐Jaz Murian depression, which was an intra‐arc extensional basin, were developed. This was associated with development of outer‐arc ophiolitic mélange and oceanward migration of the Bajgan–Durkan continental sliver, which is the continuation of the Sanandaj–Sirjan zone of the Zagros orogenic belt into the Makran region. In a Late Paleocene to Late Pliocene moderate to shallow slab dip arrangement, compression and tectonic inversion of the Proto‐Jaz Murian extensional basin into the Jaz Murian compressive basin was associated with the uplift of the southern part of the Jaz Murian Depression along the South Jaz Murian Fault, and emplacement of the Paleogene–Neogene magmatic arc, behind the Jaz Murian compressive basin. A shallow slab dip arrangement in the Quaternary led to the emplacement of a third magmatic arc inland, over the southern part of the Yazd–Tabas–Lut micro‐continental block. It is envisioned that the Makran island‐arc system will pass through similar tectonic events in the future, as the Zagros island‐arc system did in the past. However, a future remnant and/or residual basin similar to the present Gulf of Oman will continue to survive to the east.  相似文献   

15.
Abstract In this paper, a summary of the tectonic history of the Mirdita ophiolitic nappe, northern Albania, is proposed by geological and structural data. The Mirdita ophiolitic nappe includes a subophiolite mélange, the Rubik complex, overlain by two ophiolite units, referred to as the Western and Eastern units. Its history started in the Early Triassic with a rifting stage followed by a Middle to Late Triassic oceanic opening between the Adria and Eurasia continental margins. Subsequently, in Early Jurassic time, the oceanic basin was affected by convergence with the development of a subduction zone. The existence of this subduction zone is provided by the occurrence of the supra‐subduction‐zone‐related magmatic sequences found in both the Western and Eastern units of the Mirdita ophiolitic nappe. During the Middle Jurassic, continuous convergence resulted in the obduction of the oceanic lithosphere, in two different stages – the intraoceanic and marginal stages. The intraoceanic stage is characterized by the westward thrusting of a young and still hot section of oceanic lithosphere leading to the development of a metamorphic sole. In the Late Jurassic, the marginal stage developed by the emplacement of the ophiolitic nappe onto the continental margin. During this second stage, the emplacement of the ophiolites resulted in the development of the Rubik complex. In the Early Cretaceous, the final emplacement of the ophiolites was followed by the unconformable sedimentation of the Barremian–Senonian platform carbonate. From the Late Cretaceous to the Middle Miocene, the Mirdita ophiolitic nappe was translated westward during the progressive migration of the deformation front toward the Adria Plate. In the Middle to Late Miocene, a thinning of the whole nappe pile was achieved by extensional tectonics, while the compression was still active in the westernmost areas of the Adria Plate. On the whole, the Miocene deformations resulted in the uplift and exposition of the Mirdita ophiolites as observed today.  相似文献   

16.
The Taebaeksan Basin is located in the mid‐eastern part of the southern Korean Peninsula and tectonically belonged to the Sino‐Korean Craton (SKC). It comprises largely the lower Paleozoic Joseon Supergroup and the upper Paleozoic Pyeongan Supergroup which are separated by a disconformity representing a 140 myr?long hiatus. This paper explores the early Paleozoic paleogeographical and tectonic evolution of the Taebaeksan Basin on the basis of updated stratigraphy, trilobite faunal assemblages, and detrital zircon U–Pb ages of the Joseon Supergroup. The Joseon Supergroup is a shallow marine siliciclastic‐carbonate succession ranging in age from the Cambrian Series 2 to Middle Ordovician. The Ongnyeobong Formation is the sole Upper Ordovician volcanic succession documented in the Taebaeksan Basin. It is suggested that in the early Paleozoic the Taebaeksan Basin was a part of an epeiric sea, the Joseon Sea, in east Gondwana. The Joseon Sea was the depositional site for lower Paleozoic successions of the SKC. Early Paleozoic sedimentation in the Joseon Sea commenced during the Cambrian Stage 3 (~ 520 Ma) and ceased by the end of the Darriwilian (~ 460 Ma). In the early Paleozoic, the SKC was located at the margin of east Gondwana and was separated from the South China Craton by an oceanic basin with incipient oceanic ridges, the Helan Trough. The spreading oceanic ridges and associated transform faults possibly promoted the uplift of the Joseon Sea, which resulted in cessation of sedimentation and break‐up of the SKC from core Gondwana by the end of the Ordovician.  相似文献   

17.
Abstract The Ogcheon fold belt and the Ryeongnam massif in the Korean Peninsula are made up of Precambrian igneous and sedimentary rocks that have been metamorphosed, tectonically deformed and extensively intruded by mafic to felsic plutonic rocks of Permian to Jurassic age. In the present study, we report seven new U–Pb zircon ages and Sr‐Nd‐Pb isotopic data for Permian to Jurassic plutons in the Ogcheon belt and the Ryeongnam massif. In the Ogcheon belt, these are: the Cheongsan porphyritic granite (217 ± 3.1 My), the Baegrog foliated granodiorite (206.4 ± 3.6 My), the Sani granite (178.8 ± 2.9 My) and the Yeonggwang foliated granite (173.0 ± 1.7 My). For the Ryeongnam massif, we report on the Yeongdeog foliated granodiorite (252.2 ± 2.9 My), the Sancheong gabbro (203.8 ± 3.3 My) and the Baegseogri foliated granodiorite (177.8 ± 2.4 My). All of these ages are lower concordia intercepts; the upper concordia intercepts indicate derivation from a Precambrian protolith. Sr, Nd and Pb isotopes also reveal that much of the Permian–Jurassic (252–173 Ma) plutonism in Korea was generated by recycling of Precambrian rocks. These new ages, together with other published zircon ages indicate that the plutonism in the Ogcheon fold belt is coeval with that in the Ryeongnam massif, but based on the Sr‐Nd‐Pb isotopic evidence, they are not cogenetic. In addition, zircon ages provide information on the movement along the Honam shear zone, which cuts across the whole Korean Peninsula and along most of its length provides the boundary between the Ogcheon fold belt and the Ryeongnam massif. It has a prolonged history of movement and deformation and appears to have been active from the Precambrian through to the Mesozoic, from before 1924 Ma to at least 180 Ma. The Permian–Jurassic igneous and tectonic activity in Korea is a manifestation of the more extensive orogenic activities that affected the East Asian continent at that time. In China, ultra high‐pressure rocks of the Qinling–Dabie belt formed between 210 and 230 Ma as result of the collision between the South China block and the North China block. In central Japan, corresponding plutonic activity is dated as 175 to 231 Ma. The absence of ultra high‐pressure rocks in Korea and Japan precludes a simple extension of the Qinling–Dabie belt eastwards; however, the effects of the continental collision eastwards are apparent from the igneous and tectonic activity.  相似文献   

18.
The Reporoa Caldera occupies the northern end of the Reporoa Depression, previously described as a tectonic fault-angle depression. Earlier confirmation of the topographic basin as a caldera had been hindered by the lack of an associated young pyroclastic flow deposit of large enough volume to have caused caldera collapse. New exposures on the eastern margin of the Reporoa basin reveal thick lithic lag breccias (>30 m) interbedded within the 0.24 Ma Kaingaroa Ignimbrites. These ignimbrites were previously attributed to the adjacent Okataina Volcanic Centre. Lag breccia thicknesses and maximum clast sizes decrease rapidly outward from the caldera rim, and discrete breccias are absent from ignimbrite sections more than 3 km from the rim. The lithic lag breccias, together with structural and geophysical evidence, confirm Reporoa Caldera as the source of the c. 100 km3 Kaingaroa Ignimbrites, adding another major rhyolitic volcanic centre to the seven previously recognized in the Taupo Volcanic Zone. Other, older, calderas may also be present in the Reporoa Depression.  相似文献   

19.
Abstract Bahía Concepción is located in the eastern coast of the Baja California peninsula and it is shaped by northwestern–southeastern normal faults. These are associated with a 12–6 Ma rifting episode, although some have been reactivated since the Pliocene. The most abundant rocks correspond to the arc related Comondú Group, Oligocene to Miocene, which forms a mainly calc‐alkaline volcanic and volcaniclastic sequence. There are less extensive outcrops of sedimentary rocks, lava flows, domes and pyroclastic rocks of Pliocene to Quaternary ages. The Neogene volcanism in the area indicates a shift from a subduction regime to an intraplate volcanism related to continental extension and the opening of an oceanic basin. The Bahía Concepción area contains numerous Mn ore deposits, being the biggest at El Gavilán and Guadalupe. The Mn deposits occur as veins, breccias and stockworks, and are composed by Mn oxides (pyrolusite, coronadite, romanechite), dolomite, quartz and barite. The deposits are hosted in volcanic rocks of the Comondú Group and, locally, in Pliocene sedimentary rocks. Thus, the Mn deposits formed between the Middle Miocene and the Pliocene. The mineralized structures are associated with Miocene northwestern–southeastern fault systems, which are analogous to those associated with the Cu‐Co‐Zn‐Mn deposits of El Boleo. The Bahía Concepción area also bears subaerial and submarine hot springs, which are associated with the same fault systems and host rocks. The submarine and subaerial geothermal manifestations south of the bay are possibly related with recent volcanism. The geothermal manifestations within the bay are intertidal hot springs and shallow submarine diffuse venting areas. Around the submarine vents (5–15 m deep, 87°C), Fe‐oxyhydroxide crusts with pyrite and cinnabar precipitate. In the intertidal vents (62°C), aggregates of opal, calcite, barite and Ba‐rich Mn oxides occur covered by silica‐carbonate stromatolitic sinters. Some 10–30 cm thick crustiform veins formed by chalcedony, calcite and barite are also found close to the vents. The hydrothermal fluids exhibit mixed isotopic compositions between δ18O‐enriched meteoric and local marine water. The precipitation of Ba‐rich Mn oxides around the vent sites could be an active analog for the processes that produced Miocene to Pliocene hydrothermal Mn‐deposits.  相似文献   

20.
Methods for calculating ancient eustatic change amplitudes according to reef fabric-facies are proposed, with a new method for determining sediment-loading subsidence. Compared with methods based on non-reefal deposits, these methods are more accurate in restoration of original sediment thickness, determination of sediment-loading subsidence, as well as restoration of ancient water depth. According to the reef in Guangxi, China, the amplitude of sea-level rise during Middle Permian (Neoschwagerina-Yabeina zone) is 249.5 m. According to the coeval reef of the Guadalupe Mountains, New Mexico and Texas, the coeval sea-level rise is 247 m. With these effective methods available, it is feasible to establish more accurate eustatic curve of Phanerozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号