首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In 1972, V. Keilis-Borok and I. Gelfand introduced the phenomenological approach based on the morphostructural zoning and pattern recognition for identification of earthquake-prone areas. This methodology identifies seismogenic nodes capable of generating strong earthquakes on the basis of geological, morphological, and geophysical data, which do not contain information on past seismicity. In the period 1972–2018, totally, 26 worldwide seismic regions have been studied and maps showing the recognized earthquake-prone areas in each region have been published. After that, 11 of these regions were hit by earthquakes of the relevant sizes. The goal of this work is to analyze the correlation of the post-publication events with seismogenic nodes defined in these 11 regions. The test was performed using the NEIC earthquake catalog because it uniformly defines the location and magnitudes of earthquakes over the globe. The ArcMap facilities were exploited to plot the post-publication events on the maps showing the recognized seismogenic nodes. We found that about 86% of such events fall in the recognized seismogenic nodes. The performed test proved the sufficient validity of the methodology for identifying areas capable of strong earthquakes and confirms the idea on nucleating strong earthquakes at the nodes.  相似文献   

2.
Historical seismicity is used in order to map spatial distribution of seismic moment released by past earthquakes and to compare strain rate deduced from seismicity to those measured by geodetic GPS survey. Spatial analyses are performed on the seismicity of northern boundary of Central Iranian Block which coincides with the Alborz Mountains. This belt has been responsible for several catastrophic earthquakes in the past. In this study, the records of historical and instrumental earthquakes in the Alborz Mountains are used to calculate and plot geographical distribution of seismic moment released in time. A two-dimensional distribution function is proposed and used here to spread seismic moment along causative tectonic features. Using accumulated seismic moment, average slip rates across active faults are estimated for 32 sub-zones along the Alborz Mountains and western Kopet Dag. Seismic moment released by historical and recent earthquakes on this belt accounts for slip rate of 3–5 mm/year which is in good agreement with the geodetic vectors recently deduced from GPS survey in this region. The study also reveals geographical variations of slip rates along some 900 km length of this zone based on seismic history. The results are compared against finding from similar study in this region. Portions of Central and Eastern Alborz show lower seismic strain rate which could imply aseismic motion or overdue earthquakes. Completeness of historical earthquake catalogue and its reliability with regard to earthquake magnitudes, locations, and rupturing systems are among many plausible factors controlling the credibility of such results. Therefore, any conclusions derived from these results remain as reliable as the data and assumptions used for the analyses.  相似文献   

3.
王凡  沈正康  王敏  王阎昭  陶玮 《地震地质》2013,35(1):101-112
川滇菱形块体及其边界断裂带(21°~33°N,96°~108°E)是中国大陆地震活动最强烈的地区之一,该地区发生的一系列大地震造成了巨大的人员伤亡和财产损失。文中分别应用基于地震空间相关性和地壳形变场的预测方法分析了该地区未来的地震危险性。由Kagan等(1994)提出的基于地震空间相关性的方法,假定未来发生地震的概率与历史发生地震的频度成正比,根据历史地震目录建立统计学模型估计未来发生地震的概率。回溯性检验表明,这种方法对于评估地震复发周期较短的断裂带的地震危险性有较高的有效性,但对于地震复发周期较长的断裂带,如龙门山断裂带,很难给出一个理想的预期。由Shen等(2007)提出的基于地壳形变场的方法,假定长期地震危险性与地壳构造应变率成正比,根据由GPS观测获得的应变率场建立统计学模型评估未来的地震危险性。回溯性检验表明,川滇地区过去30a间发生的地震与区域应变率的大小没有明显的对应关系,但过去500a间发生的地震与应变率场有很高的相关性,表明由10a时间尺度的大地测量资料得到的地壳应变场可以很好地反映数百a时间尺度的地震危险性。  相似文献   

4.
Universality of the Seismic Moment-frequency Relation   总被引:1,自引:0,他引:1  
—We analyze the seismic moment-frequency relation in various depth ranges and for different seismic regions, using Flinn-Engdahl's regionalization of global seismicity. Three earthquake lists of centroid-moment tensor data have been used the Harvard catalog, the USGS catalog, and the Huang et al. (1997) catalog of deep earthquakes. The results confirm the universality of the β-values and the maximum moment for shallow earthquakes in continental regions, as well as at and near continental boundaries. Moreover, we show that although fluctuations in earthquake size distribution increase with depth, the β-values for earthquakes in the depth range of 0–500 km exhibit no statistically significant regional variations. The regional variations are significant only for deep events near the 660 km boundary. For declustered shallow earthquake catalogs and deeper events, we show that the worldwide β-values have the same value of 0.60 ± 0.02. This finding suggests that the β-value is a universal constant. We investigate the statistical correlations between the numbers of seismic events in different depth ranges and the correlation of the tectonic deformation rate and seismic activity (the number of earthquakes above a certain threshold level per year). The high level of these correlations suggests that seismic activity indicates tectonic deformation rate in subduction zones. Combined with the universality of the β-value, this finding implies little if any variation in maximum earthquake seismic moment among various subduction zones. If we assume that earthquakes of maximum size are similar in different depth ranges and the seismic efficiency coefficient, χ, is close to 100% for shallow seismicity, then we can estimate χ for deeper earthquakes for intermediate earthquakes χ≈ 5%, and χ≈ 1% for deep events. These results may lead to new theoretical understanding of the earthquake process and better estimates of seismic hazard.  相似文献   

5.
The locations of possible earthquake occurrence (magnitudes M ≥ 6) have been determined for mountainous Crimea and the adjacent sea shelf, including the continental slope zone. The earthquake-generating structures were assumed to be intersections of morphostructural lineaments as found by morphostructural zoning. The measurement of geological and geophysical characteristics was followed by applying a decision rule that was derived previously using the CORA-3 pattern recognition algorithm in order to find possible locations of M ≥ 6 earthquakes in the Caucasus. The results corroborate the high seismic potential for the Yalta area where two events with magnitudes of 6.0 and 6.8 occurred in 1927, as well as indicating the possibility of M ≥ 6 earthquakes in other areas in mountainous Crimea and in the adjacent Black Sea area where no such events have yet been recorded.  相似文献   

6.
The Xianshuihe Fault, the boundary of Bayan Har active tectonic block and Sichuan-Yunnan active tectonic block, is one of the most active fault zones in the world. In the past nearly 300 years, 9 historical earthquakes of magnitude ≥ 7 have been recorded. Since 2008, several catastrophic earthquakes, such as Wenchuan MS8 earthquake, Yushu MS7.1 earthquake and Lushan MS7 earthquake, have occurred on the other Bayan Har block boundary fault zones. However, only the Kangding MS6.3 earthquake in 2014 was documented on the Xianshuihe Fault. Thus, the study of surface deformation and rupture behavior of large earthquakes in the late Quaternary on the Xianshuihe Fault is of fundamental importance for understanding the future seismic risk of this fault, and even the entire western Sichuan region. On the basis of the former work, combined with our detailed geomorphic and geological survey, we excavated a combined trench on the Qianning segment of Xianshuihe fault zone which has a long elapse time. Charcoal and woods in the trench are abundant. 30 samples were dated to constrain the ages of the paleoseismic events. Five events were identified in the past 9  000 years, whose ages are:8070-6395 BC, 5445-5125 BC, 4355-4180 BC, 625-1240 AD and the Qianning earthquake in 1893. The large earthquake recurrence behavior on this segment does not follow the characteristic earthquake recurrence model. The recurrence interval is 1000~2000 years in early period and in turn there is a quiet period of about 5 000 years after 4355-4180 BC event. Then it enters the active period again. Two earthquakes with surface rupture occurred in the past 1000 years and the latest two earthquakes may have lower magnitude. The left-lateral coseismic displacement of the 1893 Qianning earthquake is about 2.9m.  相似文献   

7.
Nepal is located in a highly active tectonic region of the Himalayan belt, one of the most severe earthquake prone areas of the world. Nepal is lying between the Indian and the Eurasian plate, which are moving continuously, resulting in frequent devastating earthquakes. Moreover, different authors state that the accumulated slip deficit (central seismic gap) is likely to produce large earthquakes in the future. Cultural heritage buildings and monuments are, therefore, at risk, and the eventual cultural loss in the consequence of an earthquake is incalculable. Post-seismic surveys of past earthquakes have shown the potential damage that unreinforced masonry structures, particularly Pagoda temples, may suffer in future earthquakes. Most of the Nepalese Pagoda temples, erected during XIV century, are considered non-engineered constructions that follow very simple rules and construction detailing in respect to seismic resistance requirements and, in some cases, without any concern for seismic action. Presently, conservation and restoration of Nepalese temples is one of the major concerns, since they are considered world heritage with universal value. The present paper is devoted to outline particular building characteristics of the UNESCO classified Nepalese Pagoda temples and the common structural fragilities, which may affect their seismic performance. Moreover, based on a parametric sensitivity analysis, structural weaknesses and fragilities of Pagoda temples were identified associated to the local and traditional construction techniques, detailing and common damages.  相似文献   

8.
由地震分布丛集性给出断层参数的一种新方法   总被引:5,自引:2,他引:3       下载免费PDF全文
由于大范围内地质构造的复杂性和介质的非均匀性,发震断层面的几何形态一般十分复杂.如果大地震的破裂过程涉及多个断层的活动,则发震断层并非是单一断层平面,而是多个断层面的组合.利用地震空间位置分布丛集性,即震源点成丛位于断层面附近的假设,结合稳健扩充算法和主成分分析给出一种可以重构活断层网络三维空间结构的新方法.该方法每次从震源点集中处开始,利用假设检验扩充子断层面,并得到多个子断层面.接着按震源点属于最近断层面的准则把各子断层面内的震源点进行竞争,并根据一定假设合并和删除一些子断层面,最后用主成分分析确定每个子断层面参数.于是可根据地震事件目录给出一组矩形区域来描述断层面网络结构,其中每个矩形断层面由其位置、走向和倾角确定.通过计算机模拟发现,新方法可成功地重建模拟地震目录的断层面,最后用于南加州1992年6月28日发生的Landers地震部分余震目录中,得到各个子断层面参数与已知地质破裂或隐伏断层相当一致.  相似文献   

9.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

10.
We present the results of verifying the areas that were detected as prone to strong earthquakes by the pattern recognition algorithms in different regions of the world with different levels of seismicity and, therefore, different threshold magnitudes demarcating the strong earthquakes. The analysis is based on the data presented in the catalog of the U.S. National Earthquake Information Center (NEIC) as of August 1, 2012. In each of the regions considered, we examined the locations of the epicenters of the strong earthquakes that occurred in the region after the publication of the corresponding result. There were 91 such earthquakes in total. The epicenters of 79 of these events (87%) fall in the recognized earthquake-prone areas, including 27 epicenters located in the areas where no strong earthquakes had ever been documented up to the time of publication of the result. Our analysis suggests that the results of the recognition of areas prone to strong earthquakes are reliable and that it is reasonable to use these results in the applications associated with the assessment of seismic risks. The comparison of the recognition for California with the analysis of seismicity of this region by the Discrete Perfect Sets (DPS) algorithm demonstrates the agreement between the results obtained by these two different methods.  相似文献   

11.
基于深度学习到时拾取自动构建长宁地震前震目录   总被引:3,自引:0,他引:3       下载免费PDF全文
将深度学习到时拾取、震相关联技术与传统定位方法联系起来,构建一套连续波形自动化处理与地震目录自动构建流程,对于高效充分利用地震资料,提升微震检测能力具有十分重要的意义.我们应用最新发展的迁移学习震相识别技术、震相自动关联技术,对长宁M S6.0地震震中附近21个台站震前半个月(6月1日—6月17日)的连续记录波形进行P、S震相识别、震相自动关联和初步定位,并应用传统绝对定位和相对定位技术得到了长宁地震震前微震活动的绝对和相对定位目录.其中绝对定位目录能在较小的误差范围匹配85%的人工处理目录,其发震时刻平均误差为0.36±0.07 s,震级平均误差为0.15±0.024级,水平定位平均误差为1.45±0.028 km,其识别的1.0级以下微震数目是人工的8倍以上,将长宁地震震前微震目录的检测下限提升至M L-1左右,证明了基于深度学习到时识取和REAL(Rapid Earthquake Association and Location,快速震相关联和定位技术)震相自动关联来构建微震目录具有较好的实用性.我们的自动地震目录揭示了长宁M S6.0主震所发生的区域震前异常频繁的微震活动,以及与区域内盐矿注水井的关联性,更好地描绘了这些微震活动的时空演化特征,其空间活动性分布特征与长宁M S6.0余震序列的分布一致.  相似文献   

12.
中长期地震预测中的PI算法改进研究及应用   总被引:4,自引:0,他引:4  
孙丽娜  齐玉妍  温超  张合 《地震》2012,32(4):44-52
图像信息学PI(Pattern Informatics)算法是一种基于统计物理学的地震预测新方法, 近年来得到了较大发展。 本文探索把此方法与地震活动性网格点密集值方法相结合, 并尝试用于华北地区中长期地震预测。 在预测中, 使用1970—2011年ML≥3.0区域地震目录, 针对MS≥5.0预测“目标震级”, 采用15年尺度的地震目录滑动时间窗, 均为3年尺度的地震活动“异常学习”时段和“预测时间窗”, 结合一定时空及震级范围内地震的数量和震中分布因素, 进行地震危险性概率计算。 对该方法的预测效果使用Molchan图表法进行统计检验。 结果表明, 此方法在某些方面优于PI算法, 且在地震趋势分析和中长期预测方面有较好的应用潜力。  相似文献   

13.
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.  相似文献   

14.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

15.
The area of western Transbaikalia is characterized by moderate seismic activity. Nevertheless, there is historical and instrumental evidence to show that rather strong seismic events have occurred in the area and caused considerable material damage to the population centers around their epicenters. Seismological knowledge of the region is scant. The earthquake catalogs for the area and for the historical period of time need to be corrected and supplemented. The present paper considers the earthquake of October 9, 1864, which has not been included in any parametric catalog thus far. New primary data that were found in the regional periodic press were used to determine the epicenter and magnitude (M = 5.1) for the event. The earthquake of October 9, 1864 is a “forgotten” event, but is a significant addition to the catalog for western Transbaikalia. The materials presented here can be used to assess earthquake hazard for the area, as well as to aid in the search for other unknown or “forgotten” earthquakes.  相似文献   

16.
Seismic gaps and plate tectonics: Seismic potential for major boundaries   总被引:5,自引:0,他引:5  
The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long- and short-term seismic quiescence are used in this paper to delineate major seismic gaps.In detail, however, the distribution of large shallow earthquakes along convergent plate margins is not always consistent with a simple model derived from plate tectonics. Certain plate boundaries, for example, appear in the long term to be nearly aseismic with respect to large earthquakes. The identification of specific tectonic regimes, as defined by dip of the inclined seismic zone, the presence or absence of aseismic ridges and seamounts on the downgoing lithospheric plate, the age contrast between the overthrust and underthrust plates, and the presence or absence of back-arc spreading, have led to a refinement in the application of plate tectonic theory to the evaluation of seismic potential.The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best.The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These categories range from what we consider high to low potential for being the site of large earthquakes during that period of time. Categories 1, 2 and 6 define a time-dependent potential based on the amount of time elapsed since the last large earthquake. The remaining categories, 3, 4, and 5, are used for areas that have ambiguous histories for large earthquakes; their seismic potential is inferred from various tectonic criteria. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified.Several of the segments of major plate boundaries that are assigned the highest potential, i.e., category 1, are located along continental margins, adjacent to centers of population. Some of them are hundreds of kilometers long. High priority should be given to instrumenting and studying several of these major seismic gaps since many are now poorly instrumented. The categories of potential assigned here provide a rationale for assigning prorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.Lamont-Doherty Geological Observatory Contribution No. 2906.  相似文献   

17.
门源地区地壳三维体波速度结构及地震重定位研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文使用甘肃、青海数字地震台网及中国地震科学探测台阵记录到的门源地区地震的P波和S波到时资料,应用双差层析成像方法联合反演了该地区的地壳三维速度结构和震源位置参数.结合地质构造背景,研究了门源MS6.4地震孕育发生的深部介质环境及该地区速度结构与地震活动性之间的关系.结果表明:反演之后地震的走时残差均方根显著降低,重定位后的地震在垂直方向上呈现出与断层位置有关的条带状分布.门源地区地壳速度结构存在明显的不均匀性,浅层P波和S波速度结构与地表地质构造及地形特征密切相关.研究区内地震活动性与地壳速度结构具有很强的对应关系,地震主要分布在高速异常区域及其边缘.门源MS6.4地震震中附近的P波和S波速度结构表现出明显的高速异常,且在震源区下方存在P波低速层,这种特殊的构造条件可能是导致此次地震发生的重要原因.  相似文献   

18.
根据截断的G-R模型计算东北地震区震级上限   总被引:2,自引:0,他引:2       下载免费PDF全文
震级上限是指一个地区可能发生地震的最大震级,其概率意义为发生超过该震级地震的概率几乎为0.在有些地区,由于对其内部的地震构造研究和认识存有局限性,很难根据构造或者地质学的原则来确定震级上限.因此,根据数学模型,采用统计手段,使用地震活动性资料来计算震级上限的估计值是一种可行的方法.本文根据截断的G-R关系模型,采用最大似然计算方法,使用东北地震区的地震目录,计算了东北地震区震级上限,结果表明东北地震区的震级上限应为Mu=7.5左右.计算中我们考虑了不同震级的转换、震级误差的修正以及计算方法的影响.最终结果表明,不论采用何种方案进行计算,东北地震区的震级上限值均始终保持在7.5左右,这说明我们采用本文中方法计算得到的东北地震区的震级上限值是合理可信的,同时也说明在以往的研究中对东北地震区震级上限的估计大都是偏小的.  相似文献   

19.
汶川8.0级地震后中国大陆强震活动状态研究   总被引:1,自引:0,他引:1  
本文从不同空间、 时间尺度对2008年四川汶川8.0级地震的影响意义进行了初步讨论, 并以此分析了其后我国大陆的强震活动状态。研究结果表明, 1800年以来中国大陆西部及邻区的大三角地区8级地震活动呈现为100年左右丛集性时间过程, 具有地震平静、 地震丛集、 地震丛集发生前的过渡和丛集发生后的调整等时间特征; 2001年11月14日昆仑山口西8.1级地震和2008年5月12日四川汶川8.0级地震的发生表明, 目前该地区可能处于8级地震丛集发生前的过渡时段。20世纪以来, 中国大陆7级强震的时间活动过程明显受大三角地区8级地震时间进程的影响, 在8级地震活动的1900—1955年时段内, 7级地震幕式活动划分不显著, 而在8级地震平静的1956—2000年时段内, 7级地震幕式活动划分清晰; 以2008年汶川8.0级地震为标志, 受大三角地区8级左右巨大地震活跃控制, 中国大陆可能将进入一组新的幕式活动不清晰的、 类似于1900—1955年的强震活跃时段。  相似文献   

20.
2014年 8月3日在云南省鲁甸县发生MS6.5地震,造成了巨大的人员伤亡和财产损失.关于鲁甸地震的起因,特别是鲁甸地震与溪洛渡水库之间的关系存在一些争议.分析中强地震前后地震活动性的变化可以为判断主震起源提供一定的依据.然而,由于鲁甸地震震中附近固定台站数目少、台站距离震中远及主震后尾波干扰等因素的影响,会造成地震目录的缺失,从而可能影响地震活动性的可靠分析.为了获得更加完备的地震目录,本文采用模板匹配方法对鲁甸地震前后小地震进行了搜索和识别.以台网目录中的541个事件作为模板,在主震之前33天到主震后5天的连续波形中识别出991个未在目录中列出的地震,使余震的完备震级从1.8降低到1.3.根据检测目录得到主震前33天内的b值为1.04±0.18,余震的b值在震后5天内由0.5左右逐渐上升至0.9附近并保持稳定;根据2009年到主震发生前的台网目录得到该区域的背景b值为0.93±0.04.即鲁甸地震前后区域地震活动b值均与背景b值接近,这与典型水库诱发的中强震具有的b值特征不相符.同时通过进一步分析台网目录,未发现溪洛渡水库蓄水前后研究区域内的地震活动性存在明显变化,这也与典型水库诱发地震区域的地震活动性特征不相符.综合以上结果,我们认为2014年鲁甸MS6.5地震不具有典型水库诱发地震的特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号