首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
辽宁省及邻近地区的地震活动主要集中在海城地震区、下辽河—辽东湾、鸭绿江口和辽东半岛西侧的金州断裂沿线,地震活动与地质构造之间具有高度的相关性,明显受到了NE—NNE向和NW向两组构造的制约,构造交会部位亦即地震活动条带的结点是破坏性地震的多发区。研究表明,金州断裂盖州北—鞍山段、海城河断裂、鸭绿江断裂西支东港以南段等6条地震构造(段)是区内危险性最高的地震构造,按照4级划分原则,可将其确定为高危险等级;金州断裂金州—普兰店段、郯庐断裂带渤中北—辽东湾段、依兰—伊通断裂铁岭—开原北段等10条地震构造(段)确定为较高危险等级;郯庐断裂带下辽河段、医巫闾山西侧断裂等4条地震构造(段)危险等级一般,其它地震构造(段)的危险性较低。  相似文献   

2.
本文首先沿走向将鲜水河断裂带划分为炉霍、道孚、乾宁、康定和磨西五个断裂段,利用沿断裂带布设的跨断层短基线、短水准场地测量资料计算了近场的断层活动参数,利用覆盖断裂带相对较大区域的重力、GPS观测资料计算了重力场动态变化、GPS速度场.基于重力场动态变化和GPS速度场采用蚁群算法和粒子群算法(具有全局优化的优势)分别反演计算了五个断裂段断层活动参数,将结果中的走滑分量作为五个断裂段的现今走滑速率.通过对以上三类现今走滑速率及五个断裂段的地质平均滑动速率进行融合与对比分析,将重力资料反演计算结果作为断裂带整体走滑速率,与跨断层短基线、短水准测量计算的断层滑动速率结果进行对比分析,初步判定了各跨断层短基线、短水准场地所跨断裂的性质,最终给出了五个断裂段的现今整体左旋走滑速率和部分分支断裂左旋走滑速率,结果为:(1)炉霍段为9.13mm·a~(-1),虾拉沱区域西支断裂为2.46mm·a~(-1),东支断裂为5.84mm·a~(-1).(2)道孚段为8.57mm·a~(-1),东南段沟普区域西支断裂为1.78mm·a~(-1),东支断裂为6.79mm·a~(-1).(3)乾宁段为7.67mm·a~(-1).(4)康定段为6.14mm·a~(-1).(5)磨西段为4.41mm·a~(-1).本文还定性讨论了断裂带两侧重力、GPS测点覆盖范围内活动地块的三维弹塑性变形和古地震、历史地震造成的永久位错.  相似文献   

3.
渭河断裂咸阳段活动性研究   总被引:1,自引:0,他引:1  
田勤虎  段蕊  李晓妮  卞菊梅  魏青珂 《地震研究》2015,38(2):250-256,333
通过地貌追踪、浅层地震、钻孔联合剖面勘探及探槽开挖等,查明了渭河断裂咸阳段(杨家村—窑店)的展布和最新活动时代。结果表明,渭河断裂咸阳段从咸阳市北侧渭河阶地前缘陡坎通过,考虑到断裂在金家庄、东耳村一带存在一个左阶斜裂区,阶区宽约1 km,可将断裂分为东、西两段,即:杨家村—金家庄段和东耳村—窑店段。断裂总体走向NE,倾向S,倾角65°~75°,为同生正断层。程家村探槽显示断裂错断全新统黑垆土底界15 cm,该层底界14C测年结果为2 255 BP,顶界光释光(OSL)年龄测年结果为(3.7±0.41)ka,说明断裂在全新世有活动。渭河断裂咸阳段自晚更新世以来活动性逐渐减弱,全新世平均活动速率为0.04~0.12mm/a。  相似文献   

4.
武都—康县断裂带活动性初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
武都—康县断裂是位于甘东南地区区域大断裂中的一条左旋走滑并兼有逆冲分量的活动断裂。通过卫片解译和野外地质调查,对活动断裂几何分段、地貌和地质特征进行了研究。结果表明:武都-康县断裂可分为西(F1)和东(F2)两段,分别为上板桥-长坝镇断裂段和沈家园-窑坪断裂段;晚更新世以来断裂的活动形成了丰富的断错地貌现象,例如水系和山脊左旋位错、断层三角面、断层崖、垭口、鞍部、跌水和地裂缝。断裂西段为全新世断层,年代距今(1.730±0.111)ka至(1.670±0.141)ka之间,活动性比较强烈,并在甘泉一带发现全新世活动特征明显,主要以左旋走滑为主,同时伴有逆冲分量;而东段可能是晚更新世断层,以逆冲作用为主,并伴有左旋水平运动。  相似文献   

5.
黄卿团  付萍  郑韶鹏 《地震地质》2007,29(3):578-596
通过对福建东南沿海海拔50m以下几个地貌面的时代确定,研究了长乐-诏安NE向断裂带和与之相交切的NW向断裂带第四纪以来的活动性。结果表明:区内50m以下几个地貌面分为侵蚀-剥蚀阶地和堆积阶地,属晚更新世以来几个时期所形成;断裂在切割某个地貌面时,其地貌面的形成年代可确定为该断裂的活动年代;长乐-诏安NE向断裂带中的平潭青峰-东山澳角断裂的有些地段为晚更新世晚期(Q3p)活动断裂,垂直滑动速率为1.1~2.2mm/a;长乐-东山前梧断裂主要活动时代在中更新世(Q2p);九龙江下游NW向断裂带中的江东桥(北溪)-海沧断裂,其NW段江东桥(北溪)断裂为早第四纪(Q1p-2)断裂,SE段海沧-钱屿断裂为晚更新世(Qp3)活动断裂  相似文献   

6.
<正>甘孜-玉树断裂在遥感影像上线性特征清晰,经历过多次历史大地震,断裂沿线冲沟、山脊、洪积扇和冰碛垄左旋位错明显,前人对其晚第四纪活动特征做过较多研究。根据断裂几何结构和历史地震分布特征,该断裂分为甘孜段、玛尼干戈段、邓柯段、玉树段和当江段。根据地貌体的位错与位错起始时间的限定,获得该断裂晚第四纪以来的左旋滑动速率为12±2 mm/a、(5~7.3)mm/a、(3.4~7.3)mm/a、(5~8)mm/a、  相似文献   

7.
武威盆地南缘断裂位于河西走廊东端,是祁连山北缘逆断裂系的重要组成部分,是1927年古浪8级地震的发震断裂之一。基于遥感影像解译、野外地质观测和14C年代学数据等方法对武威盆地南缘断裂进行了详细的几何学调查和运动学定量。依据平面上几何展布的不连续性和走向的变化,该断裂可以分为5段:康宁桥段(F_1)、南营河段(F_2)、上古城村—张流沟段(F_3)、他家庄段(F_4)和严家庄段(F_5)。该断裂为晚更新世以来活动断裂,地表活动形迹长约60km,以逆冲为主,局部兼具左旋走滑分量,沿断层走向断错地貌发育。断裂全新世以来的垂直滑动速率(0.44±0.08)mm/a,南营河段(F_2)晚更新世以来左旋走滑速率(1.43±0.08)mm/a。  相似文献   

8.
基于遥感技术研究依兰-伊通断裂带   总被引:8,自引:0,他引:8  
郯庐断裂带是中国东部的大型走滑断裂, 在沈阳以北由一支分为两支: 依兰—伊通断裂带和敦化-密山断裂带。 利用遥感数据并结合DEM (数字高程模型)数据对郯庐断裂带北段的依兰-伊通断裂带进行了分析研究。 根据该断裂带的形态特征将其划分成三段(沈阳—开原段、 开原—依兰段、 依兰—萝北段)。 沈阳—开原段为单条断裂, 它分隔了下辽河平原和辽东山地; 开原—依兰段为双边不对称断裂, 两支断裂相向内倾形成地堑, 隔大黑山分隔了松辽盆地和那丹哈达岭; 依兰-萝北段断裂较为隐伏, 该段是小兴安岭和三江盆地的分界。 通过分析依兰—伊通断裂带对河流和其他断裂的错动情况, 进一步揭示了郯庐断裂带曾经历了早期左旋走滑和后期右旋走滑的历史。 另外还对伊通地堑进行了较为详细的描述及说明, 通过对其DEM作横向和纵向的剖面分析证实了其西北边界为主要控盆断裂。  相似文献   

9.
在浮槎山西缘开展野外调查发现典型断层剖面,采集断层泥ESR年代样品,测年结果为(152±30)ka BP和(188±23)ka BP;垂直断裂布设1条浅层地震勘探测线,获得了近地表高精度浅层地震剖面。断层剖面及浅震解译结果显示,该断裂位于元古代石英岩与白垩纪砂岩之间,具有相似的构造特征,有正断分量。综合断层地貌特征、断层泥测年结果、浅层地震勘探结果及区域断裂构造对比,认为郯庐断裂带浮槎山段池河-太湖断裂最新活动时代为中更新世,但第四纪以来活动程度较弱;断裂的第四纪活动情况与其所在地的弱地震活动水平有关。  相似文献   

10.
《地震地质》2021,43(2)
塔拉斯-费尔干纳断裂沿NW向斜切西天山山脉,以愈千km的规模尺度构成了中亚地区重要的区域构造边界带。早年和近期的许多地质研究结果均显示该断裂具有强烈的活动性,所估计的全新世滑动速率高达8~20mm/a,但GPS大地测量的简略估算结果却表明其现今整体的滑动速率仅约为2mm/a甚至更低。文中基于塔拉斯-费尔干纳断裂周边大范围的最新GPS速度场资料,通过断裂两侧远、近场地壳的差异运动分析、断裂沿线最大剪切应变率定量类比,以及借助半无限弹性空间三维断裂位错模型的严密反演,证实了该断裂现今仅具有中等偏弱的活动强度:塔拉斯-费尔干纳断裂存在分段活动性,其西北段、中段、东南段的右旋走滑速率分别为(2.1±0.7) mm/a、(3.3±0.4) mm/a和(2.4±0.7) mm/a,即中段的速率略大于西北段和东南段,但量值均不突出,远低于目前大多数地质结果所估计的高速率。同时,根据区域无自旋参考框架下断裂两侧远、近场GPS速度矢量的差异甚微的特征,认为塔拉斯-费尔干纳断裂现今的低滑动速率并非断裂强闭锁的暂态表现。  相似文献   

11.
浅层地震勘探资料地质解释过程中值得重视的问题   总被引:5,自引:5,他引:5  
浅层地震勘探是第四系覆盖区隐伏断层活动性研究常用的手段,叠加剖面上反射波组的分叉、合并、弯曲、中断、尖灭等被用作判断断层存在的重要标志。松花江北的吕刚屯、巨宝屯浅层地震叠加剖面上,T0为下更新统砂砾石层等松散堆积和白垩系砂岩、泥岩的分界面,反射波组清晰。T0-1波组为砂砾石层和黏土层、或砂砾石层和粉细砂层的反射界面,反射波组振幅大,能量强。根据地震反射剖面和测线上的钻孔资料,认为阿什河断层错断了下更新统下段,滨州断层错断了上更新统下段。而通过建立高精度的钻探联合地质剖面、地层年代测试和地层对比,确认阿什河断层没有错断第四系,滨州断层错断了下更新统下段。最后,从第四系的岩性、厚度变化等解释了浅层地震叠加剖面上反射波组的中断、弯曲并非断层活动的结果,而是由第四纪地层相变引起的  相似文献   

12.
哈尔滨市主要断裂未来地震危险性评价   总被引:5,自引:0,他引:5       下载免费PDF全文
哈尔滨市目标区内主要断裂断错地表的最新活动时代为第四纪早期,晚更新世以来无断错地表的活动迹象。通过对城市活动断层地震危险性评价的技术思路、哈尔滨市工作区的地震地质环境与潜在震源区划分、目标区主要断裂活动特征的综合分析,确定了目标区内3条主要断裂未来可能发生地震的最大震级,并以兴安-东蒙活动地块与工作区作为分析的两种范围尺度,在适当调整工程地震学地震危险性概率分析方法的基础上,综合估算了目标区和目标区内单条断裂未来100年的发震概率。结果表明:哈尔滨市目标区主要断裂未来发生4.0级上破坏性地震的可能性极小,可能地震的最大震级为MS5.5  相似文献   

13.
张路  谢新生  郭慧 《地震》2020,40(3):83-98
1830年河北磁县M71/2地震发生于磁县—大名断裂带西段, 该断裂地震破裂和活动性的研究受到地震研究者关注。前人研究着眼于1830年磁县大地震的地表破裂, 本文的研究重点是磁县—大名断裂带西段晚更新世以来的断层活动性。应用卫片、 航片解译和野外地震地质调查等方法开展研究, 重要地点进行探槽开挖或野外地质剖面剥落以及采样测年, 确定了断层各段落破裂事件的发生年代。该断裂西段分为3个断层段落: F2为磁县—峰峰段落, F3为东田井村—陶泉乡段落, F4为韩家沟村—甘泉村段落。F2断层段大部分隐伏, 为早中更新世断层。F3断层段东端在东田井村南断错距今22 ka地层, 为晚更新世活动断层; F3断层段在鼓山南山村一带为全新世断层, 从张家楼村到陶泉乡为推测全新世活动断层。F4断层段为全新世断层。F4断层段全部位于基岩山区, 可见多处基岩断面、 地震沟槽及断层眉脊等断层破裂; 一些破裂面发育地衣丽石黄衣[Xanthoria elegans (Link.) Th. Fr.], 使用地衣测年方法确定这些破裂面为1830年磁县大地震地表地震遗迹。磁县—大名断裂带终止于F4西端。综合分析断裂带各个分段的破裂事件, 得到磁县—大名断裂带西段活动事件时空分布, 估计磁县—大名断裂带西段的晚更新世地震复发周期在6000年左右。  相似文献   

14.
徐叶邦 《地震学报》1991,13(3):372-379
活动断裂带中地震时空分布的信息维 D1避免了容量维 D0的缺陷,考虑了每一地震事件对信息所作的贡献,从新的角度反映了地震分布时空结构特征.计算表明,炉霍大震前鲜水河断裂带地震分布时间结构信息维 D1=0.1051,这是该区大震活动的一个参考性判据.安宁河断裂带十七年现今地震分布时间结构信息维:北段,D1(tN)=0.1363;南段,D1(tS)=0.06710.地震空间分布信息维:北段,D1(KN)=1.053;南段,D1(Ks)=0.7758.南北两段分属信息维维数不同的两个自相似系统.南段地震活动自组织程度较高.这有助于强震重点监测区内主要危险段的判定地震时空分布 D1特征探索对于活断层研究以及地震预报都有一定的意义.   相似文献   

15.
2016年6月1日实施的修订国家标准GB 18306-2015《中国地震动参数区划图》,哈尔滨市城区由Ⅵ度上升为Ⅶ度。郯庐断裂带北部的依兰—伊通断裂上的通河县、方正县地震烈度由Ⅵ度上升为Ⅶ度和Ⅷ度的高烈度区。哈尔滨市的城乡工程性震害防御能力已经明显不能满足要求。本文在分类抽样调查该区域城乡在用的20世纪与本世纪的建设工程的状况,讨论区域建设工程对策建议。  相似文献   

16.
The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.  相似文献   

17.
2008年汶川MS8.0地震对周边断层地震活动的影响   总被引:10,自引:1,他引:9       下载免费PDF全文
为分析2008年5月12日四川汶川MS8.0级地震对周边断层地震活动的影响,本文首先基于Burgers体黏滞松弛模型计算汶川MS8.0级地震引起的库仑应力动态演化,分析认为2008年汶川MS8.0级地震在周边断层上引起的库仑应力显著增加的主要有四个断层段,分别为鲜水河断裂道孚-康定段、东昆仑断裂东段玛曲段、青川断裂和龙门山断裂南段.而且震后4年内黏滞松弛引起的库仑应力变化量可能与同震变化相当,相当于再发生一次汶川地震所造成的影响,因此震后效应在分析强震影响时不应忽略.本文基于强震引起的库仑应力变化动态演化,结合背景地震发生率、由Dieterich(1994)模型给出地震发生概率,结合相关构造地质、历史地震、余震活动等方面资料的综合分析认为,上述4个断裂段地震危险性由高到低依次为鲜水河断裂道孚-康定段、龙门山断裂南段、东昆仑断裂东段玛曲段和青川断裂.  相似文献   

18.
汤郎-易门断裂位于青藏高原东南缘,走向近南北,按地貌特征及区域构造背景可将其划分为北段(营盘村-插甸断裂)、中段(插甸-碧城断裂)及南段(碧城-易门断裂)。针对汤郎-易门断裂构造地貌差异,利用30 m分辨率的DEM数据,基于GIS技术提取与断裂活动相关的水系,并计算其陡峭指数,结合野外考察及遥感影像讨论断裂在不同分段的活动习性与地貌特征。研究发现,区域内降水及基岩抗风化能力对亚流域陡峭指数的影响较小,认为陡峭指数能够较好地反映汤郎-易门断裂的垂直构造运动。陡峭指数显示,断裂走向呈两端高、中间低的特点,其分段性与前人划分结果具有较好一致性,所表征的基岩垂直活动性差异可作为断裂带活动分段的依据。断裂带东西侧陡峭指数在不同分段上表现出差异性,北段断裂东西侧陡峭指数显示出东、西向差异性抬升不显著,其与地貌上断裂北段表现的左旋走滑运动一致,以水平运动为主;断裂中段及南段陡峭指数在东西侧表现出东高西低的特点,显示东侧较西侧基岩抬升更快,可能以垂直差异运动为主。  相似文献   

19.
西秦岭与南北地震构造带交汇区深部电性结构特征   总被引:15,自引:10,他引:5       下载免费PDF全文
西秦岭造山带与南北地震构造带接触区是中国大陆最重要的南北向和东西向构造转化的接合部位之一.本文介绍了分别位于该区106°E东、西两侧的LMS-L3和DBS-L1两条大地电磁剖面的探测结果,两条剖面分别跨过了龙门山构造带东北段的青川段和宁强段.采用大地电磁相位张量分解技术对两条剖面上各测点的电性走向、二维偏离度等进行了计算和分析,采用NLCG二维反演方法对TE+TM模式的视电阻率和阻抗相位数据进行了二维联合反演.反演得到二维电性结构,在经度106°西侧LMS-L3剖面的深部电性结构自北向南揭示出,西秦岭北缘、成县盆地北缘、康县(即勉略构造带)和平武-青川断裂带都表现为明显的电性梯度带,深部延伸可达几十公里;西秦岭造山带、碧口地块与龙门山构造带东北段3个构造单元整体表现为高电阻体、呈现往南叠合且角度逐渐变陡的趋势.在106°E西侧西秦岭造山带区域的深部存在壳内低阻层,而东侧区域表现为高电阻体,深部电性结构在106°E东、西两侧的差异与该区深部速度结构特征一致,东、西两侧深部结构差异可能是该区中强地震分布差异的深层原因.LMS-L3和DBS-L1两条剖面南段的深部电性结构图像揭示出龙门山构造带东北部的青川段和宁强段内的平武-青川断裂带具有明显不同的深部结构特征,平武-青川断裂带在青川段为明显的电性梯度带,在宁强段不再表现为电性梯度带,而是完整的高电阻块体.汶川强余震向东北发展止于青川青木川附近,与平武-青川断裂带延伸深度和向北东方向的延伸长度密切相关,同时高电阻块体的宁强段对汶川强余震东北发展起到了阻挡作用.  相似文献   

20.
Based on the 1︰50000 active fault geological mapping, combining with high-precision remote imaging, field geological investigation and dating technique, the paper investigates the stratum, topography and faulted landforms of the Huashan Piedmont Fault. Research shows that the Huashan Piedmont Fault can be divided into Lantian to Huaxian section (the west section), Huaxian to Huayin section (the middle section) and Huayin to Lingbao section (the east section) according to the respective different fault activity. The fault in Lantian to Huaxian section is mainly contacted by loess and bedrock. Bedrock fault plane has already become unsmooth and mirror surfaces or striations can not be seen due to the erosion of running water and wind. 10~20m high fault scarps can be seen ahead of mountain in the north section near Mayu gully and Qiaoyu gully, and we can see Malan loess faulted profiles in some gully walls. In this section terraces are mainly composed of T1 and T2 which formed in the early stage of Holocene and late Pleistocene respectively. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These indicate that in this section the fault has been active in the late Pleistocene and its activity becomes weaker or no longer active after that. In the section between Huaxian and Huayin, neotectonics is very obvious, fault triangular facets are clearly visible and fault scarps are in linear distribution. Terrace T1, T2 and T3 develop well on both sides of most gullies. Dating data shows that T1 forms in 2~3ka BP, T2 forms in 6~7ka BP, and T3 forms in 60~70ka BP. All terraces are faulted in this section, combing with average ages and scarp heights of terraces, we calculate the average vertical slip rates during the period of T3 to T2, T2 to T1 and since the formation of T1, which are 0.4mm/a, 1.1mm/a and 1.6mm/a, and among them, 1.1mm/a can roughly represent as the average vertical slip rate since the middle stage of Holocene. Fault has been active several times since the late period of late Pleistocene according to fault profiles, in addition, Tanyu west trench also reveals the dislocation of the culture layer of(0.31~0.27)a BP. 1~2m high scarps of floodplains which formed in(400~600)a BP can be seen at Shidiyu gully and Gouyu gully. In contrast with historical earthquake data, we consider that the faulted culture layer exposed by Tanyu west trench and the scarps of floodplains are the remains of Huanxian MS8½ earthquake. The fault in Huayin to Lingbao section is also mainly contacted by loess and mountain bedrock. Malan loess faulted profiles can be seen at many river outlets of mountains. Terrace geomorphic feature is similar with that in the west section, T1 is covered by thin incompact Holocene sand loam, and T2 is covered by Malan loess. OSL dating shows that T2 formed in the early to middle stage of late Pleistocene. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These also indicate that in this section fault was active in the late Pleistocene and its activity becomes weaker or no longer active since Holocene. According to this study combined with former researches, we incline to the view that the seismogenic structure of Huanxian MS8½ earthquake is the Huashan Piedmont Fault and the Northern Margin Fault of Weinan Loess, as for whether there are other faults or not awaits further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号