首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methodology for seismic microzonation and earthquake damage scenarios may be considered as composed of two stages. In the first stage, microzonation maps with respect to estimated earthquake characteristics on the ground surface are generated for an investigated urban area. The effects of local geological and geotechnical site conditions are taken into account based on site characterization with respect to representative soil profiles extending down to the engineering bedrock. 1D site response analyses are performed to calculate earthquake characteristics on the ground surface using as many as possible, hazard compatible real acceleration time histories. In the second stage, vulnerability of buildings and pipeline systems are estimated based on site-specific ground motion parameters. A pilot study is carried out to evaluate seismic damage in a district in Istanbul, Turkey. The results demonstrate the significance of site characterization and site response analysis in calculating the earthquake characteristics on the ground surface in comparison to simplified empirical procedures.  相似文献   

2.
Earthquake risk assessment for Istanbul metropolitan area   总被引:2,自引:2,他引:2  
The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associated risk for rational formulation of contingency plans and mitigation strategies. In urban centers, the seismic risk is best quantified and portrayed through the preparation of “Earthquake Damage and Loss Scenarios.” The components of such scenarios are the assessment of the hazard, inventories and the vulnerabilities of elements at risk. For the development of the earthquake risk scenario in Istanbul, two independent approaches, one based on intensities and the second on spectral displacements, are utilized. This paper will present the important features of a comprehensive study, highlight the methodology, discuss the results and provide insights to future developments.  相似文献   

3.
One of the most influencing elements in inhabitants’ earthquake safety definition is represented by the interactions between people and post-event environment in urban scenarios. Understanding and simulating rules for pedestrians’ motion in earthquake evacuation could be useful to inquire the risk assessment introducing the “human” factor influence: integrated “risk maps” could be realized by combining results of similar analyses with the traditional site hazard, buildings vulnerability and exposition indices. This work proposes an innovative approach based on the analysis of these interactions. Two experimentally-based activities are required: an analysis of human behaviors towards the post-earthquake environment; a relation for defining environmental modifications. Results firstly show a summary of man-environment interactions in earthquake evacuations. A possible criterion for path choice in evacuation is also numerically defined. A theoretical agent-based model is developed on these bases and summarizes phases, motion rules and man-environment interactions in earthquake pedestrians’ evacuation in urban scenarios. Secondly, quick criteria for scenario modifications involving ruins formation are proposed and evaluated: for each building, the percentages of internal and external ruins area is a function of its vulnerability and the expected earthquake Richter magnitude. Moreover, the external ruins formation criterion is validated by comparing predicted and effective values of ruins area depth in real cases. The model could be proposed as a tool for evaluating probable pedestrians’ choices in post-event scenarios, in order to reduce the interferences between the built environment and the evacuation process through interventions on buildings, urban fabric and strategies for emergency management.  相似文献   

4.
This paper describes a rapid response and risk mitigation system Istanbul Natural Gas Distribution Network Seismic Risk Reduction Project (IGRAS) for the Istanbul Natural Gas Network (IGDA?). Upon the trigger signal received from the earthquake early warning system in Istanbul, the real-time algorithm at IGRAS system district regulators checks the threshold levels of ground-motion parameters and interrupts the gas flow if any exceedance is detected. Then the system: (1) produces almost real-time earthquake hazard maps by using on-line strong-motion data from the strong-motion network in Istanbul: (2) estimates the distribution of damage to the natural gas network; and (3) transfers these damage distribution maps to stakeholders to enable dispatching rapid response teams to high damage areas.  相似文献   

5.
Potential impact of large earthquakes on urban societies can be reduced by timely and correct action after a disastrous earthquake. Modern technology permits measurements of strong ground shaking in near real-time for urban areas exposed to earthquake risk. The Istanbul Earthquake Rapid Response System equipped with 100 instruments and two data processing centers aims at the near real time estimation of earthquake damages using most recently developed methodologies and up-to-date structural and demographic inventories of Istanbul city. The methodology developed for near real time estimation of losses after a major earthquake consists of the following general steps: (1) rapid estimation of the ground motion distribution using the strong ground motion data gathered from the instruments; (2) improvement of the ground motion estimations as earthquake parameters become available and (3) estimation of building damage and casualties based on estimated ground motions and intensities. The present paper elaborates on the ground motion and damage estimation methodologies used by the Istanbul Earthquake Rapid Response System with a special emphasis on validation and verification of the different methods.  相似文献   

6.
The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associated risk for rational formulation of contingency plans and mitigation strategies. In urban centers the seismic risk is best quantified and portrayed through the preparation of ‘Earthquake damage and Loss Scenarios’. The components of such scenarios are the assessment of the hazard, inventories and the vulnerabilities of elements at risk. For the development of earthquake risk scenario in Tashkent–Uzbekistan and Bishkek–Kyrgyzstan an approach based on spectral displacements is utilized. This paper will present the important features of a comprehensive study, highlight the methodology, discuss the results and provide insights to the future developments.  相似文献   

7.
8.
Earthquakes trigger other earthquakes and build up clusters in space and time that in turn create a bias in seismic catalogues. Therefore, declustering is considered as a prerequisite in seismic studies, particularly for probabilistic seismic hazard analysis, not only to eliminate the bias but also to decouple mainshocks and triggered events. However, a declustering process is not a straightforward task due to the complex nature of earthquake phenomena. There exist several declustering methods that mostly employ subjective rules to distinguish between background seismicity and offsprings. Eventually, the final declustered catalogues usually deviate significantly according to the employed method. This issue is raising some concerns, such as how to select the most suitable declustering algorithm, or to assess how this selection affects seismic hazard assessment. In consequence, the main goal of this paper is to quantify the sensitivity of seismic hazard assessments to different declustering techniques. Accordingly, the recently compiled Turkish earthquake catalogue was declustered by making use of three declustering algorithms. A total of six declustered catalogues, two catalogues per method, one by implementing the default input parameters, and one by altering the free input parameters of the employed methods, were produced. The clusters of selected earthquakes were studied in terms of the spatial–temporal distribution of earthquake sequences. A sensitivity analysis was conducted through the major steps of seismic hazard assessment for Istanbul metropolitan city. The seismicity of Istanbul and surroundings was modeled on the basis of four areal source zones. Comparative studies showed that, while the selected declustering algorithm did not significantly affect the completeness periods of moderate to large size earthquakes, it considerably altered those of small magnitude events (e.g. Mw 4.3–5.2) and consequently the recurrence parameters of the source zones. Depending on the declustering algorithm and input parameters, the activity rate was observed to vary up to a factor of two. The differences in the declustered catalogues obtained from different declustering approaches resulted in considerable variations in seismic hazard estimations. The hazard maps at return periods of 475 and 2475 years indicated that peak ground acceleration values may vary up to 20% at some locations. Moreover, the differences in 5% damped elastic spectral accelerations at T = 0.2 for the return periods of 475 and 2475 years are about 18 and 12%, respectively, on the southern shores of Istanbul where the highest hazard levels are observed.  相似文献   

9.
基于GIS的城市地震次生火灾危险性分析系统   总被引:20,自引:0,他引:20       下载免费PDF全文
李杰  江建华  李明浩 《地震学报》2001,23(4):420-426
以地理信息系统(GIS)为开发平台,研究了城市地震次生火灾危险性分析系统的基本构成与功能和系统的数据分层与组织,给出了地震次生火灾危险性分析模型及方法.以上海市中心城区为背景,开发了基于GIS的地震次生火灾危险性分析与火灾扑救辅助决策系统.   相似文献   

10.
This work summarises the seismic hazard analysis performed for the complete characterisation of strong ground-motion at the site of the Itoiz dam (Western Pyrenees, Spain). The hazard analysis includes the compilation of a composite catalogue from French and Spanish agencies, the definition of an original hybrid seismogenic source model (including zones and major faults) and the selection of ground motion prediction equations (GMPEs). Hazard results are provided as hazard curves and acceleration response spectra on rock for the 1000- and 5000-year return periods, which correspond respectively to the operating basis earthquake (OBE) and safety evaluation earthquake (SEE). The impact of truncating GMPEs at a number of standard deviations (epsilon) has been found not critical here for the return periods targeted. Subsequently, an analysis of the contribution of each source to total hazard and a hazard disaggregation analysis are performed in order to establish the earthquake-source parameters for both the OBE and SEE scenarios consistently with the seismotectonics of the region. The European Strong Motion database is then searched and a selection of records is proposed for each of the scenarios. Our results suggest that seismic hazard in the region is underestimated by the official Spanish seismic hazard map included in the current version of the code (NCSE-02), which is the reference document for the definition of seismic actions for dam projects in the whole Pyrenees.  相似文献   

11.
The European Commission funded the RISK-UE project in 1999 with the aim of providing an advanced approach to earthquake risk scenarios for European towns and regions. In the framework of Risk-UE project, two methods were proposed, originally derived and calibrated by the authors, for the vulnerability assessment of current buildings and for the evaluation of earthquake risk scenarios: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. The vulnerability of the buildings is defined by vulnerability curves, within the macroseismic method, and in terms of capacity curves, within the mechanical method. In this paper, the development of both vulnerability and capacity curves is presented with reference to an assumed typological classification system; moreover, their cross-validation is presented. The parameters of the two methods and the steps for their operative implementation are provided in the paper.  相似文献   

12.
The prediction of possible future losses from earthquakes, which in many cases affect structures that are spatially distributed over a wide area, is of importance to national authorities, local governments, and the insurance and reinsurance industries. Generally, it is necessary to estimate the effects of many, or even all, potential earthquake scenarios that could impact upon these urban areas. In such cases, the purpose of the loss calculations is to estimate the annual frequency of exceedance (or the return period) of different levels of loss due to earthquakes: so-called loss exceedance curves. An attractive option for generating loss exceedance curves is to perform independent probabilistic seismic hazard assessment calculations at several locations simultaneously and to combine the losses at each site for each annual frequency of exceedance. An alternative method involves the use of multiple earthquake scenarios to generate ground motions at all sites of interest, defined through Monte–Carlo simulations based on the seismicity model. The latter procedure is conceptually sounder but considerably more time-consuming. Both procedures are applied to a case study loss model and the loss exceedance curves and average annual losses are compared to ascertain the influence of using a more theoretically robust, though computationally intensive, procedure to represent the seismic hazard in loss modelling.An erratum to this article can be found at  相似文献   

13.
城市破坏性地震应急预案的编制与修订要点探讨   总被引:6,自引:0,他引:6  
邢海灵  蒋通  李文艺 《地震》2005,25(3):115-122
破坏性地震应急预案是城市防震减灾工作的核心内容之一, 是破坏性地震发生后进行应急处置的指导性文件。 根据综合分析国外部分地区的防灾规划中地震应急处置的内容与特点, 研究了目前我国部分城市的破坏性地震应急预案现状和存在问题。 并在此基础上, 探讨了城市破坏性地震应急预案中防御水准的制定、 灾害信息的收集和传递、 辅助决策保障、 应急救灾反应以及对人文和环境的考虑等关键问题及其解决方法, 为城市破坏性地震应急预案的编制或修订提供参考。  相似文献   

14.
The paper describes the earthquake performance assessment of two historical buildings located in Istanbul exposed to a Mw = 7+ earthquake expected to hit the city and proposes solutions for their structural rehabilitation and/or strengthening. Both buildings are unreinforced clay brick masonry (URM) structures built in 1869 and 1885, respectively. The first building is a rectangular-shaped structure rising on four floors. The second one is L-shaped with one basement and three normal floors above ground. They survived the 1894, Ms = 7.0 Istanbul Earthquake, during which widespread damage to URM buildings took place in the city. Earthquake ground motion to be used in performance assessment and retrofit design is determined through probabilistic and deterministic seismic hazard assessment. Strength characteristics of the brick walls are assessed on the basis of Schmidt hammer test results and information reported in the literature. Dynamic properties of the buildings (fundamental vibration periods) are measured via ambient vibration tests. The buildings are modelled and analyzed as three-dimensional assembly of finite elements. Following the preliminary assessment based on the equivalent earthquake loads method, the dynamic analysis procedure of FEMA 356 (Pre-standard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers, Reston, 2000) and ASCE/SEI 41-06 (Seismic rehabilitation of existing buildings, American Society of Civil Engineers, Reston, 2007) is followed to obtain dynamic structural response of the buildings and to evaluate their earthquake performance. In order to improve earthquake resistance of the buildings, reinforced cement jacketing of the main load carrying walls and application of fiber reinforced polymer bands to the secondary walls are proposed.  相似文献   

15.
This paper is a presentation of an European project called RISK-UE, entitled: “An advanced approach to earthquake risk scenarios with applications to different European towns”. It gives the origin, the objectives and the organisation of the project, together with the content of the different workpackages comprising methodological aspects: different features of European town, seismic hazard, urban system exposure, vulnerability of current, historical and monumental buildings, vulnerability of lifelines and essential facilities, seismic risk scenario, with an application to the seven following cities: Barcelona, Bitola, Bucharest, Catania, Nice, Sofia and Thessaloniki. These studies were realized in close relation with the decisionmakers of these cities, in order that they implement Risk Management Plans and Plans of Action to effectively reduce seismic risk.  相似文献   

16.
Earthquake loss models are subject to many large uncertainties associated with the input parameters that define the seismicity, the ground motion, the exposure and the vulnerability characteristics of the building stock. In order to obtain useful results from a loss model, it is necessary to correctly identify and characterise these uncertainties, incorporate them into the calculations, and then interpret the results taking account of the influence of the uncertainties. An important element of the uncertainty will always be the aleatory variability in the ground-motion prediction. Options for handling this variability include following the traditional approach used in site-specific probabilistic seismic hazard assessment or embedding the variability within the vulnerability calculations at each location. The physical interpretation of both of these approaches, when applied to many sites throughout an urban area to assess the overall effects of single or multiple earthquake events, casts doubts on their validity. The only approach that is consistent with the real nature of ground-motion variability is to model the shaking component of the loss model by triggering large numbers of earthquake scenarios that sample the magnitude and spatial distributions of the seismicity, and also the distribution of ground motions for each event as defined by the aleatory variability.  相似文献   

17.
叶青 《华南地震》1992,12(4):70-76
本文以翔实的资料,从环境地质条件,城市建设规划,建筑物防震减灾以及地震谣传等方面,论述了厦门城市存在发生各种地震灾害的危险。并且提出在城市里开展减轻地震灾害的措施和对策。  相似文献   

18.
A set of 3D physics‐based numerical simulations (PBS) of possible earthquakes scenarios in Istanbul along the North Anatolian Fault (Turkey) is considered in this article to provide a comprehensive example of application of PBS to probabilistic seismic hazard (PSHA) and loss assessment in a large urban area. To cope with the high‐frequency (HF) limitations of PBS, numerical results are first postprocessed by a recently introduced technique based on Artificial Neural Networks (ANN), providing broadband waveforms with a proper correlation of HF and low‐frequency (LF) portions of ground motion as well as a proper spatial correlation of peak values also at HF, that is a key feature for the seismic risk application at urban scale. Second, before application to PSHA, a statistical analysis of residuals is carried out to ensure that simulated results provide a set of realizations with a realistic within‐ and between‐event variability of ground motion. PBS results are then applied in a PSHA framework, adopting both the “generalized attenuation function” (GAF) approach, and a novel “footprint” (FP)‐based approach aiming at a convenient and direct application of PBS into PSHA. PSHA results from both approaches are then compared with those obtained from a more standard application of PSHA with empirical ground motion models. Finally, the probabilistic loss assessment of an extended simplified portfolio of buildings is investigated, comparing the results obtained adopting the different approaches: (i) GMPE, (ii) GAF, and (iii) FP. Only FP turned out to have the capability to account for the specific features of source and propagation path, while preserving the proper physically based spatial correlation characteristics, as required for a reliable loss estimate on a building portfolio spatially distributed over a large urban area.  相似文献   

19.
In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimated adopting a novel probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be adopted for building damage scenarios. Additionally, site effects, evaluated in a previous work through amplification factors of Housner intensity, have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between Housner and EMS-98 macroseismic intensity has been developed. This relationship has been used to convert the probability mass functions of Housner intensity obtained from synthetic seismograms amplified by the site effects coefficients into probability mass function of EMS-98 intensity. Finally, the Damage Probability Matrices have been applied to estimate the damage levels of the residential buildings located in the urban area of Potenza. The proposed methodology returns the full probabilistic distribution of expected damage, thus avoiding average damage index or uncertainties expressed in term of dispersion indexes.  相似文献   

20.
It has taken more than a hundred years for seismic observations in the Philippines to evolve to a modern observation system.The responsibility of seismic observations was likewise transfeered from one agency to another during this same period of time.At present,the mandate of conducting seismic observatins in the Philippines rests with the Philippine Institute of Volcanology and Seismology(PHIVOLCS),In 2000,through a grant aid from the Japan International Cooperation Agency(JICA),the Philippine Seismic netowrk was upgraded to a digital system.As a result,a new set of seismic monitoring equipments was installed in all of the 34 PHIVOLCS seismic stations all over the country,Digital waveforms are now available for high level seismic data processing.and data acquisition and processing are now automated.Included in the upgrade is the provision of strong motion accelerographs in all stations whose data can now be used for studying ground motion and intensity attenuation relations,The new setup is now producing high-resolution data that can now be used for conducting basic seismological researches,Earthquake locations have now improved allowing for the modeling and delineation of earthquake source regions necessary for earthquake hazard studies.Current seismic hazard studies in the Philippines involve the estimation of ground motion using both probabilitstic and deterministic approaches,seismic microzonation studies of key cities using microtremor observations,paleoseismology and active faults mapping ,and identification of liquefaction-prone,landslide-prone nd tsunami-affected areas.The earthquake database is now being reviewed and completed with the addition of historical events and from data from regional databases,While studies of seismic hazards were primarily concentrated on a regional level ,PHIVOLCS is now focusing on doing these seismic hazard studies on a micriolevel.For Metro Manila,first generation hazard maps showing ground rupture,ground shaking and liquefaction hazards have recently been completed.Other large cities that are also at risk from large earthquakes are the next targets.The elements at risk such as population,lifelines,and vertical and horizontal structures for each of these urban centers are also being incorporated in the hazard maps for immediate use of planners,civil defense officials,policy-makers and engineers.The maps can also now be used to describe possible scenarios during times of strong events and how appropriate socio-economic and engineering responses could be designed.In addition,a rapid earthquake damage assessment system has been started which will attempt to produce immediate or rapid assessments identification of elements at risk durin times of strong earthquakes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号