首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 843 毫秒
1.
青岛崂山ML 4.1地震序列应力降变化研究   总被引:1,自引:1,他引:0  
根据Andrews谱积分方法,采用近震源Brune圆盘模型,研究了2003年6月3日青岛崂山ML4.1地震序列破裂过程中应力降变化情况.结果表明,崂山序列主震静应力降为24 MPa,动态应力降大约为静态应力降的2.2倍;崂山序列余震应力降普遍低于5 MPa,约有80%的余震应力降小于1 MPa,显示出与主震断层面有关的余震低应力降现象,这说明主震的破裂与余震破裂过程之间存在明显的差别.这种现象与崂山序列的弱强度衰减一致,表明此次序列的余震属于低能量破裂过程.计算结果显示:①由Andrews谱积分方法得到的小震应力降与震级大小存在一定的相关性;②小应力降事件的静态应力降和动态应力降的比值普遍小于1,未发现明显的应力降之比与Brune应力降之间的关系.  相似文献   

2.
根据地震破裂过程中的多普勒效应,利用多台波谱参数推算九江-瑞昌Ms5.7地震的震源破裂参数,得到主震的破裂方位角ψ0≈319.6°,破裂速度约为2.3 km/s,用最小二乘法拟合的相关系数极值约为0.80.在此基础上,分别计算了主震在4.8级强余震的两个节面上的静态库仑应力变化量,结果显示:主震在4.8级余震节面Ⅰ、Ⅱ上的静态库仑应力变化均为正值,分别为0.48 MPa和0.02 MPa.主震在节面Ⅰ、Ⅱ上产生的静态库仑应力的变化十分接近.应力增加的区域主要位于主震断层的右侧,应力减小的区域主要分布在震中南部.统计显示:绝大部分余震均发生在静态库仑应力增加的区域内,尤其是在节面Ⅰ上,表明主震破裂产生的库仑破裂应力变化对4.8级余震的发生有重要的触发作用,同时也有利于大多数余震的发生.  相似文献   

3.
本文采用离散波数法,计算了2014年于田MS7.3地震的断层破裂在近场和远场产生的库仑破裂应力变化,并结合地震活动特征,讨论了MS7.3地震对后续余震活动和远场区域小震活动的动态应力触发作用.结果表明, ① MS7.3地震产生的库仑破裂应力变化对其西南侧主体余震区的地震活动起到了抑制作用,这可能是本次MS7.3地震序列余震活动水平不高的主要原因;距主震约30 km的北东方向余震区后续地震活动受到了主震产生的动态和静态应力变化的共同触发作用,动态应力变化峰值为2.78 MPa,静态应力变化为0.80 MPa,这与该区余震较为活跃相一致;距主震约45 km的北部余震区受到动态应力触发作用,应力变化峰值为0.72 MPa. ② MS7.3地震产生的动态库仑应力变化空间分布呈非对称性,其中北东方向、北部余震分布与动态应力变化正值区存在相关性,从应力变化的角度解释了MS7.3地震的后续余震空间活动特征. ③ MS7.3地震在沙雅、伽师地区的远场接收点产生的动态应力变化峰值分别为0.09 MPa、0.1 MPa,对两个区域的小震活动具有动态触发作用.  相似文献   

4.
刘容  陈强  杨莹辉  钟霞  苑雨 《地震学报》2023,45(1):17-28
选取IRIS远震台站波形数据,反演了云南漾濞MS6.4地震震源破裂过程,计算了断层破裂在近场产生的动态库仑破裂应力变化,并讨论了主震对近场余震活动的动态应力触发作用。结果显示:动态库仑应力演化过程与震源破裂特征反演结果一致,其大小分布与地震序列分布的疏密程度也具有较好的相关性。主震产生的静态和动态库仑破裂应力均促进余震的发生,但相比静态应力,余震位于库仑破裂应力正值区域的比例提高了21%,余震与动态库仑应力变化的正负区域有更好的一致性,动态应力能更好地解释震后余震分布的空间特征。垂直于地震序列主干10 km处出现小震丛集,该现象可能是由主震产生的动态库仑破裂应力占主导作用所致。定量分析主震对余震的动态应力触发结果显示,主震后一周内MS4.0以上的8次余震接收点均受到了动态库仑破裂应力的触发作用。   相似文献   

5.
2000年姚安地震的震源参数   总被引:16,自引:0,他引:16       下载免费PDF全文
根据近场小孔径观测台网记录的余震序列资料,研究了2000年1月15日云南姚安MS6.4地震序列的地震物理过程. 用地震标定律关系估算主震的地震矩M0=1.58×1018N·m,矩震级MW=6.0,平均位错=0.63m,断层长度L=16.6km,断层宽度W=5.6km. 余震序列的高精度定位结果和能量分布走向,很好地证实了主震的断层破裂走向为N50°W,震区马尾菁断裂为主震发震构造,断层错动性质以右旋走滑为主. 用横波记录资料及波谱分析方法估算出余震的震源参数: 地震矩范围为1010~1016N·m,震源破裂半径a为80~500m,地震应力降范围为0.01~9.5MPa. 较大应力降(Δσ>1.0MPa)沿主断层线性排列,大应力降(Δσ>2.0MPa)与ML≥3.0级地震相关. 余震能量释放和高应力降的地震多发生在6.0~11km的深度范围,说明在这一深度范围内最大程度地集中了地壳中的应力.  相似文献   

6.
在离散波数法(DWN)基础上,计算了武定M6.5地震断层破裂在周围介质中产生的位移时程(位移理论地震图)和动态位移场;进行弹性动力学转换后,求得应变时程和动态应变场;最后得到了武定M6.5地震所产生的动态库仑破裂应力变化量和动态库仑破裂应力变化场,进而研究其与后续余震的关系. 结果表明,动态应力最大峰值和静态应力的正区均呈非对称性分布,两者的分布特征与余震的分布特征基本一致. 在动态应力峰值为正的确定区应力值超过了0.1 MPa触发阈值, 在静态应力值为正的确定区应力值超过了0.01 MPa触发阈值. 这说明动态应力和静态应力均有助于余震的发生.   相似文献   

7.
使用由极密集的临时地震台台网观测的余震到时,阐明了2004年新潟县中部地震主震断层的高分辨率速度结构。评估了速度结构与滑动、应力变化及余震分布的空间关系。根据运动学滑动模型,结合三维地壳结构,计算了断层上静态应力降的分布。具有低余震活动性的高速体十分接近主震的震源,并扩展到了断层的东北侧。该高速体大致与凹凸体重合,其同震滑动量和静态应力降高于周边地区。相比之下,在该高速体的浅外围观测到了负应力降区,沉积厚度向西南方向急剧增加且该区余震活动频繁。我们认为断层破坏区周围围岩的结构非均匀性具有控制主震断层动态破裂过程的显著潜势。  相似文献   

8.
吴忠良 《中国地震》2001,17(1):8-15
对NEIC宽频带地震辐射能量目录和哈佛矩心矩张量(CMT)目录的比较,给出了关于视应力的一些可能是有意义的结果,尽管目前的结果误差仍很大,可靠性也是有限的,但这种比较所提供的线索却颇值得注意,视应力的计算给出关于地震断层面上非线性动摩擦函数的线索,能量/地震矩之比随地震大小的变化表明,在BK模型框架下,对于走滑型地城,依赖于滑动速度的摩擦似乎占主要地位,而对于非走滑型地震,依赖于位移的摩擦似乎占主要地位,主震和余震的能量/地震矩之比的比较表明,对于走滑型地震,余震的视应力平均地说来低于主震的视应力,而对于非直滑型地震,余震的视应力即有高于主震的也有低于主震的,这对于障碍体和凹凸模式的讨论及模型中地震破裂停止条件的设置可能具有一定的参考意义。  相似文献   

9.
1989年到1999年,大同—阳高地区发生了一系列MS≥5的中强地震.本文基于前人对1989年三次MS≥5地震的震源机制反演的结果,通过建立不同断层模型,利用库仑应力方法,计算前震对于主震,以及前震和主震对于余震的库仑应力触发关系,提出了一种可能的破裂模型,即1989年前震沿北西西方向发生左旋破裂,之后主震和余震沿北北东方向发生右旋破裂.根据这种破裂模式计算得出,前震发生后,主震震源处的库仑应力增加了约2×105 Pa,余震震源处的库仑应力出现下降;主震发生后,余震处的库仑应力出现回升,最后余震处的库仑应力几乎没有变化.基于大同地震台网的近场观测数据,用JHD(Joint Hypocentral determination)定位方法,对1999年11月1日MS=5.6地震后一个月的余震进行重定位,得到一条走向118°,倾角85°的左旋走滑断层,余震的深度分布在5km至20km范围内,显示该断层是隐伏断层.另外提出对主震震中位置约10km的修正.本文对1989年三次MS≥5地震序列和1999年MS=5.6地震余震空间分布的研究揭示该地区存在两条活跃的共轭隐伏走滑断层(1989年主震的北北东方向和1999年地震的北西西方向),并且推断已知的大王村断裂和团堡断裂是地下这两条共轭的隐伏走滑断层构造/地震活动在地表的响应.  相似文献   

10.
2017年8月8日我国四川九寨沟发生里氏7.0级地震.本研究利用基线校正方法获得距震中100km范围内9个强震台站同震位移,基于Sentinel-1卫星干涉SAR影像对获取了InSAR同震形变场.结合GPS形变数据,本研究进行了震源滑动模型联合反演,结果显示此次地震整体以走滑运动为主,释放地震矩约为7.60×1018 N·m(~MW6.52).通过对比模拟形变场和观测值显示,联合反演结果优于单独基于InSAR形变场的反演结果.静态应力变化计算结果显示断层平均静态应力降为1.07MPa.反演滑动模型沿走向和倾角方向拐角波数值分别为0.99×10-4和1.10×10-4.同震静态库仑应力变化计算结果显示共有83.6%的余震位于库仑应力增加的区域,被主震所触发的余震占总数的77.9%,主震对后续余震具有显著触发作用.强地面运动模拟结果显示模拟结果在烈度分布范围和等级方面与调查烈度符合度很高,模拟结果能够很好地反映断层破裂的方向性效应等特征.本研究计算结果显示九寨沟地震无论是平均静态应力降还是拐角波数均低于同类型地震的平均水平,这可能是造成本次地震强地震动水平相对不高的原因.  相似文献   

11.
Introduction An earthquake could be caused by the failure of focal material or fast slip on the pre-existed faults under the tectonic stress based on the understanding of the occurrence process of earth-quakes in which the stress change could play a key role. Therefore to examine the stress change is beneficial to understanding the physic process actually occurring in the source region deeply. The apparent stress is defined as the product of seismic efficiency and the average stress on the foc…  相似文献   

12.
According to the rupture dynamics of earthquakes, variations of the apparent stress and the difference between the static stress drop and the dynamic stress drop during the rupture of earthquakes are analyzed for the July 20, 1995 M L=4.1 Shacheng, Hebei, China, earthquake sequence. Results obtained show that the apparent stress for main-shock is about 5 MPa, and the average apparent stress for aftershocks 0.047 MPa. During the rupture of the main-shock, the dynamic stress drop is approximately 1.6 times greater than the static stress drop with the difference of nearly 2.7 MPa. The dynamic stress drop is less than the static stress drop for all aftershocks with the average difference of −0.75 MPa. Therefore, when the mainshock occurs the final stress on the focal fault is higher than the dynamic frictional stress, corresponding to that the fault is abruptly locked. When the aftershocks occur the final stress on the focal fault is lower than the dynamic frictional stress, corresponding to that the fault overshoots. It can be seen from the above results that there could be some differences in the physic processes between the mainshock and the aftershocks. Contribution No. 05FE3013, Institute of Geophysics, China Earthquake Administration.  相似文献   

13.
According to the rupture dynamics of earthquakes, variations of the apparent stress and the difference between the static stress drop and the dynamic stress drop during the rupture of earthquakes are analyzed for the July 20, 1995 M L=4.1 Shacheng, Hebei, China, earthquake sequence. Results obtained show that the apparent stress for main-shock is about 5 MPa, and the average apparent stress for aftershocks 0.047 MPa. During the rupture of the main-shock, the dynamic stress drop is approximately 1.6 times greater than the static stress drop with the difference of nearly 2.7 MPa. The dynamic stress drop is less than the static stress drop for all aftershocks with the average difference of ?0.75 MPa. Therefore, when the mainshock occurs the final stress on the focal fault is higher than the dynamic frictional stress, corresponding to that the fault is abruptly locked. When the aftershocks occur the final stress on the focal fault is lower than the dynamic frictional stress, corresponding to that the fault overshoots. It can be seen from the above results that there could be some differences in the physic processes between the mainshock and the aftershocks.  相似文献   

14.
2008年5月12日四川汶川8.0级地震前后震源区应力水平估计   总被引:8,自引:0,他引:8  
根据地震力学和数字地震学理论,利用视应力和应力降,估算了2008年5月12日四川汶川MS8.0级地震前后震源区的应力水平,结果表明,震前震源区应力值约为1.5~2.0MPa,地震破裂过程中,由于断层发生错动过头,使地震发生后震源区应力低于动摩擦力,降至-1.2~-0.1MPa。  相似文献   

15.
By using a broadband Lg attenuation model developed for the Tibetan Plateau, we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M7.0 earthquake that occurred on August 8, 2017, in Jiuzhaigou, China, and its aftershock sequence. Thus, the source parameters, including the scalar seismic moment, corner frequency and stress drop, of these events can be further estimated. The estimated stress drops vary from 47.1 kPa to 7149.6 kPa, with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa. The estimated stress drops show significant spatial variations. Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip. In contrast, the highest stress drop was 7.1 MPa for the mainshock, and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip. By using a statistical method, we found self-similarity among some of the aftershocks with a nearly constant stress drop. In contrast, the stress drop increased with the seismic moment for other aftershocks. The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process. As such, the stress drop represents a key parameter for improving our understanding of earthquake source physics.  相似文献   

16.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

17.
The energy radiated as seismic waves strongly depends on the fault rupture process associated with rupture speed and dynamic frictional mechanisms involved in the fault slip motion.Following McGarr and Fletcher approach,we derived a physics-based relationship of the weighted average fault slip velocity vs apparent stress,rupture speed and static stress drop based on a dynamic circular fault model.The resultant function can be approximately used to bound near-fault ground motion and seismic energy associated with near-fault coseismic deformation.Fault frictional overshoot and undershoot mechanisms governed by a simple slip-weakening constitutive relation are included in our consideration by using dynamic rupture models named as M-and D-models and proposed by Madariaga(1976) and Boatwright.We applied the above function to the 2008 great Wenchuan earthquake and the 1999 Jiji(Chi-Chi) earthquake to infer the near-fault ground motion called slip weighted average particle velocity and obtained that such model-dependent prediction of weighted average ground velocities is consistent to the results derived from the near-fault strong motion observations.Moreover,we compared our results with the results by McGarr and Fletcher approach,and we found that the values of the weighted average particle velocities we obtained for these two earthquakes are generally smaller and closer to the values by direct integration of strong motion recordings of the near-fault particle velocity waveform data.In other words,if this result comes to be true,it would be a straightforward way used to constrain the near-fault ground motion or to estimate source parameters such as rupture speed,static and dynamic stress drops.  相似文献   

18.
李艳娥  陈学忠 《地震》2017,37(4):10-21
2011年3月11日, 一个 MW9.1地震袭击了日本本州地区, 为了分析这次地震前后主震破裂区内应力时空变化, 我们选取1996年1月~2016年6月期间发生在破裂区内的563个5.0≤MS≤6.9地震, 研究了视应力随时间的变化和空间分布。 日本MW9.1地震前从2002年中起视应力开始呈趋势性上升变化, 到2009年初以0.18 MPa/a的速率从0.6 MPa上升到1.76 MPa, 相差约3倍, 直到地震发生前夕一直保持在1.5 MPa之上。 地震发生之后, 直到2016年6月在破裂区内视应力呈缓慢下降变化, 但仍保持在1.5 MPa之上较高水平。 视应力在地面上和断层面上的分布显示, 1996—2005年间破裂区仅存在个别视应力高值, 从2006年到2011年2月, 破裂区大面积出现视应力高值。 在日本MW9.1地震发生之后的近3个月内, 破裂区视应力整体处于高值水平, 之后在较高的水平上缓慢减弱。 视应力是地震断层面上平均应力的下限, 视应力的高低在一定程度上反映的是震源断层面上平均应力的高低。 在日本MW9.1地震前, 发生在破裂区内的地震, 其断层面上的平均应力经历了大约8.5年的趋势上升变化过程。 这次大地震前破裂区所在的地壳应力逐渐增加, 最后导致断层面错动发生日本MW9.1地震。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号