首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湖泊湿地水文过程研究进展   总被引:1,自引:0,他引:1  
湖泊湿地是世界上最重要的生态系统之一,在调蓄洪水、净化环境、保护生物多样性以及为人类提供淡水和食物等方面发挥着不可替代的作用.然而,受气候变化和人类活动叠加影响,湖泊湿地水文过程发生了剧烈变化,湖泊湿地面临着面积萎缩、质量下降和服务功能退化等风险.本文总结了原位观测、数值模拟和遥感技术在获取湖泊湿地关键水文要素方面的优...  相似文献   

2.
Management of wetland connectivity is important for biodiversity conservation. In the modern agricultural landscape, the natural connections between floodplain wetlands have been greatly altered. Agricultural ditches and channelized streams are widely distributed in floodplains, which may contribute to the maintenance of wetland connectivity and biodiversity. To determine how these watercourse networks affect wetland biodiversity, we examined the relationship between the species richness of aquatic animals and wetland connectivity, with a special focus on species mobility. From July to August 2011, fish and aquatic insects were collected from 24 wetlands in northern Japan. To determine the degree of wetland connectivity, we assessed the relative importance of individual wetlands in maintaining the entire wetland network using two connectivity indices: hydrologic connectivity via watercourses and spatial connectivity defined as Euclidian distances between wetlands using graph theory. We found that only high mobility groups of both taxa could enhance species richness in either a hydrologic (fish) or spatial (insect) wetland network. The species richness of insects with high-flying ability was found to increase as spatial connectivity increased. Furthermore, the species richness of fish with high-swimming ability was positively influenced by hydrologic connectivity, most likely because highly mobile species were able to reach suitable habitats and migrate from source populations in a wetland network owing to their good mobility. Our findings indicate that hydrologic network is important for maintaining biodiversity as well as spatial connectivity. It is important to focus conservation efforts on key wetlands with high hydrologic and spatial connectivity in future wetland management.  相似文献   

3.
4.
5.
Equatorial glacier‐fed streams present unique hydraulic patterns when compared to glacier‐fed observed in temperate regions as the main variability in discharge occurs on a daily basis. To assess how benthic fauna respond to these specific hydraulic conditions, we investigated the relationships between flow regime, hydraulic conditions (boundary Reynolds number, Re*), and macroinvertebrate communities (taxon richness and abundance) in a tropical glacier‐fed stream located in the high Ecuadorian Andes (> 4000 m). Both physical and biotic variables were measured under four discharge conditions (base‐flow and glacial flood pulses of various intensities), at 30 random points, in two sites whose hydraulic conditions were representative to those found in other streams of the study catchment. While daily glacial flood pulses significantly increased hydraulic stress in the benthic habitats (appearance of Re* > 2000), low stress areas still persisted even during extreme flood events (Re* < 500). In contrast to previous research in temperate glacier‐fed streams, taxon richness and abundance were not significantly affected by changes in hydraulic conditions induced by daily glacial flood pulses. However, we found that a few rare taxa, in particular rare ones, preferentially occurred in highly stressed hydraulic habitats. Monte‐Carlo simulations of benthic communities under glacial flood reduction scenarios predicted that taxon richness would be significantly reduced by the loss of high hydraulic stress habitats following glacier shrinking. This pioneer study on the relationship between hydraulic conditions and benthic diversity in an equatorial glacial stream evidenced unknown effects of climate change on singular yet endangered aquatic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Observations made during archaeological work at sites associated with alluvial deposits, and engineering geology investigations at dam sites on rivers in Western Maharashtra indicate that the complexity of palaeoclimatic and geomorphic developments in this region during recent times has not been fully recognised. The rivers show unmistakable signs of recent rejuvenation. They have deepended their channels upto 75 feet through alluvial deposits and bedrock basalts, and gorges and entrenched meanders are common. The alluvium is predominantly silty with irregular patches and lenses of sandy and pebbly material. Stone tools and animal fossils found in the alluvial deposits indicate a late Pleistocene age for them. The rivers at the beginning of the period under consideration must have been aggrading with extensive flood plains, heavier sediment loads and higher discharges in a wetter climate. After having covered their flood plains with thick alluvial deposits the streams were rejuvenated, possibly through epeirogenic uplift and then the present superimposed drainage pattern developed. Most streams are misfits in their valleys, and it is necessary to investigate whether any drainage changes have taken place in recent times.  相似文献   

7.
8.
9.
邢伟  鲍锟山  韩冬雪  王国平 《湖泊科学》2019,31(5):1391-1402
沼泽湿地是陆地生态系统的重要组成部分,在维护区域环境稳定中起着重要作用.随着社会经济的发展,人类活动导致湿地大面积退化和消失,严重影响了区域生态安全;恢复退化湿地已成为各国政府和学者关注的焦点.而了解历史时期沼泽湿地发育过程及影响因素则是建立合理湿地恢复目标的重要前提.东北地区是我国最大的沼泽湿地集中分布区,其中70%的湿地面临不同程度的退化威胁;但由于数据的缺乏,东北地区沼泽湿地发育过程及其与气候变化的关系仍不清楚.基于此,本研究系统分析了全新世以来东北地区沼泽湿地形成发育的动态变化过程,并探讨了东北地区不同区域沼泽湿地的发育规律及其对气候变化的响应机理.研究发现东北地区沼泽湿地约从12 ka(1 ka=1000 cal.)开始发育,在距今8.6 ka以后开始广泛形成,约有35%的沼泽湿地形成于全新世暖湿期(8.0-4.0 ka);而沼泽湿地发育的高峰期则集中在全新世晚期.这种发育趋势与全球北方主要区域沼泽湿地大规模发育趋势显著不同.古气候重建表明,全新世早期东北地区气候温暖湿润,处在有利于沼泽发育的时期,促进了沼泽湿地的形成;而在全新世晚期,东北地区呈现冷湿的气候组合特征,冷湿的气候条件不利于有机质的分解,进而促进了沼泽湿地的大规模形成和发育.此外,研究结果也表明全新世以来东北地区不同区域沼泽湿地发育的时间和规模呈现显著的空间差异,而温度和降水则是影响不同区域沼泽湿地发育的最重要因素.本研究将为我国东北地区沼泽湿地的保护和恢复提供一定的理论和数据支持.  相似文献   

10.
滹沱河湿地是山西省重要的湿地资源,对生物多样性的保护有至关重要的作用.有壳变形虫是一类生活在淡水生态系统中的原生动物,对环境变化响应敏感,是良好的环境生物指示剂.本研究主要对山西滹沱河流域6个湿地52个不同生境的沉积样品进行有壳变形虫物种组成及多样性分析,通过对有壳变形虫和环境因子数据进行排序分析探讨影响有壳变形虫群落分布的关键环境因子.结果显示:滹沱河湿地共记录有壳变形虫20种,其中斜口三足虫(Trinema enchelys)、顶足法帽虫(Phryganella acropodia)和线条三足虫(Trinema lineare)为优势种,相对丰度分别为23.4%、17.38%、13.48%.沉积物粒度和有机质含量对有壳变形虫的物种组成及多样性有显著影响,砂粒含量越低、有机质含量越高,有壳变形虫的丰富度和多样性就越高.CCA排序结果表明硝态氮和COD是影响有壳变形虫种类组成和分布的关键环境因子,解释量分别为19.6%和17.3%,而pH的解释量最小,为8.6%.本研究结果为山西湿地有壳变形虫的现代生态学研究提供借鉴,为湿地多样性保护、管理和修复提供理论支撑.  相似文献   

11.
The flamingo Phoenicopterus ruber roseus frequents Mediterranean wetlands. In recent decades, the population of this species has increased significantly in the Mediterranean region, despite the reclamation of many wetlands. The increase is thought to reflect the opportunistic behaviour of flamingos. They visit some sites more frequently than others in response to human activities such as organic pollution, conservation measures and better management of breeding areas on the northern side of the Mediterranean. Tunisian wetlands are major wintering and nursery habitats for the flamingo that in very wet years can also become important breeding areas. These areas can support up to half the population of the western Mediterranean, which is estimated at around 80 000 to 90 000 birds. To demonstrate the changes in the wintering population in Tunisia, the key site of Essijoumi, which has up to 25 000 wintering flamingos, was selected as a case study area. It has been shown that Essijoumi, an urban wetland in Tunis, has changed from a hypersaline to a brackish waterlogged site for most of the year. The change can be traced to the recent urban extension of Tunis which led to a water balance surplus due to increased runoff and decreased agricultural land in the catchment area. Organic pollution is playing a major role in the nutrification of water resources leading to better feeding habitats. This, in turn, has influenced the distribution of flamingos and the carrying capacity of the wetland. Increased water depth to about 3 m has made the northern part of Essijoumi inaccessible. However, the southern and eastern parts of this wetland have become more attractive to flamingos and to a diversity of waterfowl. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Mariola Krodkiewska   《Limnologica》2007,37(3):259-263
The studies have revealed that Potamothrix bavaricus (Oeschmann, 1913), generally rare in Poland, is a common species in the benthic oligochaete fauna of different anthropogenic freshwater habitats in a heavily industrialised area of Poland. It was often found in habitats with significant salinity, a high total hardness and a large content of nutrients. The evident resistance to various pollutants enables the settlement of P. bavaricus in such habitats, which are unsuitable for other oligochaete species.  相似文献   

13.
The water level of marsh wetlands is a dominant force controlling the wetland ecosystem function, especially for aquatic habitat. For different species, water level requirements vary in time and space, and therefore ensuring suitable water levels in different periods is crucial for the maintenance of biodiversity in marsh wetlands. Based on hydrodynamic modelling and habitat suitability assessment, we determined suitable dynamic water levels considering aquatic habitat service at different periods in marsh wetlands. The two-dimensional hydrodynamic model was used to simulate the temporal and spatial variation of water level. The habitat suitability for target species at various water levels was evaluated to obtain the fitting curves between Weighted Usable Area (WUA) and water levels. And then suitable water levels throughout the year were proposed according to the fitting curves. Using the Zhalong Wetland (located in northeastern China) as a case study, we confirmed that the proposed MIKE 21 model can successfully be used to simulate the water level process in the wetland. Suitable water levels were identified as being from 143.9–144.2 m for April to May, 144.1–144.3 m for June to September, and 144.3–144.4 m for October to November (before the freezing season). Furthermore, proposed water diversion schemes have been identified which can effectively sustain the proposed dynamic water levels. This study is expected to provide appropriate guidance for the determination of environmental flows and water management strategies in marsh wetlands.  相似文献   

14.
The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change.  相似文献   

15.
16.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

17.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Artificial drainage of forested wetlands to increase timber production has profoundly altered the hydrology of North-European landscapes during the 20th century. Nowadays, drainage ditches and small dredged streams can comprise most fluvial water bodies there, but the resulting ecological effects are poorly documented. In the current study, we explored, using fish as an indicator group, consequences of the transformation of natural stream networks to a mixture of natural and artificial watercourses. We asked whether the transformation results in impoverishment, enrichment or re-assembling of the communities both at watercourse and the landscape scales. We sampled fish in 98 sites in five well-forested regions in Estonia where ditches formed 83–92%, dredged streams 4–7%, and natural streams 3–10% of the total length of small watercourses. Based on a total of 6370 individual fish of 20 species, we found that, compared to natural streams, ditches had an impoverished fauna at both scales and both in terms of species richness and assemblage composition. Only natural streams hosted characteristic species (with Barbatula barbatula, Lampetra planeri and Lota lota emerging as significant indicators), while dredged streams had intermediate assemblages. The habitat factors explaining those drainage-related differences included a reduced flow velocity, loss of stream channel variability, less transparent water, and abundant aquatic vegetation. Hence, for stream-dwelling fish, drained forest landscapes represent degraded habitats rather than novel ecosystems, which contrasts with the transformation of terrestrial assemblages. Future studies should address whether that reflects the situation for whole aquatic assemblages, and how is the functioning of the hydrological systems affected. We suggest that the critical management issues for environmental mitigation of ditching effects on fish include basin scale spatial planning, protecting of the remaining natural streams, and rehabilitation of ditch channels in flat landscapes lacking beavers.  相似文献   

19.
T.S. McCarthy   《Journal of Hydrology》2006,320(3-4):264-282
The Okavango Delta of northern Botswana is a large (40,000 km2) alluvial fan located at the terminus of the Okavango River. The river discharges about 10 km3 of water onto the fan each year, augmented by about 6 km3 of rainfall, which sustains about 2500 km2 of permanent wetland and up to 8000 km2 of seasonal wetland. Interaction between this surface water and the groundwater strongly influences the structure and function of the wetland ecosystem. The climate is semi-arid, and only 2% of the water leaves as surface flow and probably very little as groundwater flow. The bulk of the water is lost to the atmosphere. The Okavango River also delivers about 170,000 tonnes of bedload sediment and about 360,000 tonnes of solutes to the Delta each year, most of which are deposited on the fan. Bedload is deposited in the proximal, permanent wetland, whilst much of the solute load is deposited in the seasonal wetland. Notwithstanding the high evapotranspirational loss, saline surface water is rare. Between 80 and 90% of the seasonal flood water infiltrates the ground, recharging the groundwater beneath the flood plains and the many islands on the flood plains. The remainder is lost by evaporation. This groundwater reservoir is transpired into the atmosphere by both aquatic vegetation on the flood plains and terrestrial vegetation on the islands, and the water table is steadily lowered following passage of the seasonal flood. Trees, which are almost exclusively confined to islands, are particularly important, as they lower the water table beneath islands relative to the surrounding wetlands. There is therefore a net flow of groundwater towards islands. Accumulation of dissolved salts in this groundwater leads to precipitation of solutes (mainly of silica and calcite) in the soils beneath island fringes and the islands grow by vertical expansion. Islands are thus an expression of the chemical sedimentation taking place on the fan. Sodium bicarbonate accumulates in the groundwater beneath island centres, and this impacts on the vegetation, leading ultimately to barren island interiors. Dense saline brine thus produced subsides under density-driven flow. This cycling of seasonal flood water through the groundwater reservoir thus plays a key role in creating and maintaining the biological and habitat diversity of the wetland, and inhibits the formation of saline surface water.  相似文献   

20.
青海湖地区环境变化对动物区系演变影响的探讨   总被引:6,自引:0,他引:6  
青海湖地区近百年来由于气候干暖化趋势增强,湖周植被、土地退化,人类经济活动加剧,湖区青藏高原动物成分的种类和数量减少,但蒙新及华北动物区系成分则有增加趋势,致使该区动物区系成分发生显著变化。从青海湖地区动物区系形成来看,决定动物区系演变的原因主要是气候、生物等生态因子的综合作用,人为因子影响仅在近30年来才日益突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号