首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
王琼  高原  石玉涛 《地球物理学报》2015,58(11):4068-4078
青藏高原东南缘地区是现今地壳形变和地震活动最强烈的地区之一,也是研究青藏高原现今变形机制和构造演化规律的重要区域.本研究使用云南区域地震台网的55个宽频带地震台站连续地震背景噪声数据,采用双台站互相关方法获得Rayleigh(瑞利)面波经验格林函数,提取相速度频散曲线,反演得到云南地区周期5~34s范围内方位各向异性分布图像.反演结果揭示:短周期(5~12s)Rayleigh面波快波优势方向与区域断裂走向有很好的一致性,快波方向随着断裂走向的变化而变化.周期16~26s快波优势方向与反映上地壳特性的5~12s图像总体图像相似,但细节略有不同.其中,滇中块体内易门断裂和滇中块体内东侧的普渡河断裂附近,各向异性快波方向从NS向NW方向旋转;易门断裂以西呈NW向.这反映了青藏高原物质东流和川滇块体受到青藏块体的南东向挤压作用.周期30~34s范围的各向异性,滇缅泰块体和印支块体,快波优势方向为NS和NNW向;而在滇中块体内部,各向异性快波方向呈顺时针旋转变化,可能与青藏高原物质向东逃逸有关.本文还开展了与体波各向异性的对比分析,通过与近震S波分裂、Pms转换波分裂和远震SKS、PKS和SKKS(以后简称为XKS)分裂的对比研究,发现随着周期的增大,得到的快波优势方向与XKS剪切波快波偏振方向趋向一致,与地壳快剪切波偏振方向呈一定夹角.本研究认为,青藏高原东南缘地区壳幔各向异性具有不同的特征和形成机制.  相似文献   

2.
本文利用径向和切向接收函数确定地壳各向异性的方法,处理了布设在青藏高原东北缘甘东南地区、横跨西秦岭北缘等断裂的24个密集宽频带流动台站远震资料,得到了研究区地壳各向异性特征.结果显示,平均快波方向呈现NW-SE、NWW-SEE及NNW-SSE,平均分裂时间0.56 s.甘东南中部及北部地区快波方向与GPS速度方向、前人利用XKS波分裂获取的快波方向及该地区断层展布方向基本一致,说明该地区壳幔运动可能是耦合的.同时研究区南部少数台站快波方向呈现NNW-SSE,与断裂方向及GPS速度方向有一定夹角,表明台站下方壳幔运动可能是解耦的.全区快波方向自北向南由近E-W逐渐转变为NW-SE,最后变为NNW-SSE.据此推测地壳在该区的变形挤压有顺时针方向旋转的趋势,这与该区块体挤压应力方向一致.  相似文献   

3.
新生代以来,青藏高原快速隆升、地壳缩短和东向挤出.受到稳定的扬子地块阻挡,青藏高原东南缘地壳发生强烈变形.地震各向异性研究有助于认识地壳内部精细结构及内部运动学过程.通过收集密集地震台阵的观测资料,利用环境噪声提取Rayleigh波频散曲线,采用多角度频散曲线反演方法,获得地壳和上地幔顶部高分辨率的地震S波速度和各向异性图像.青藏高原东南缘地区上地壳的地震快波方向与其相邻的走滑断裂带走向、GPS水平速度场方向基本一致,围绕喜马拉雅东部构造结顺时针旋转.然而,中、下地壳的各向异性与上地壳存在明显差异,例如,在木里盐源盆地和滇中地块等各向异性方向发生大幅度转向,从上地壳的NE方向转为中、下地壳的NW方向.中、下地壳的各向异性方向与其低速层的延伸方向吻合.在下地壳底部和上地幔顶部的范围内,地震快波方向再次发生改变,与上地壳的各向异性分布一致,可能说明在较早的历史时期上地壳与下地壳是耦合在一起的,在中新世时期低速黏滞性流体挤入青藏高原东南缘中下地壳,使原有的上地壳与中下地壳发生解耦.因此,新生代以来高原物质挤出可能导致青藏高原东南缘地壳发生强烈变形.  相似文献   

4.
利用青藏高原东北缘区域数字地震台网43个台站的远震SKS波形资料,采用最小能量法和旋转相关法得到台站下方上地幔介质各向异性的分裂参数:快波偏振方向(φ)和快慢波时间延迟(δt)。研究结果表明:在塔里木盆地东南缘区域,各向异性快波方向与该区域的断裂走向存在明显的夹角,该盆地向柴达木盆地的俯冲方向一致,各向异性归因为古构造运动遗留下的"化石各向异性",且由于壳幔物质的拆沉作用,推测该区域壳幔之间存在解耦作用;在祁连—河西走廊区,SKS快波偏振方向呈NW-SE,与主要断裂带的走向一致;在西秦岭北缘断裂带附近,观测到快慢波时间延迟有着较大的变化,可能是岩石圈变形和软流圈物质流动共同导致;在鄂尔多斯板块内,快波方向呈NW-SE方向,可能暗示青藏高原深部物质分叉绕流运动。青藏高原东北缘不同区域台站下方的各向异性均具有差异性,进一步证实了青藏高原东北缘地区构造变形的复杂性。  相似文献   

5.
青藏高原东北缘上地幔各向异性研究   总被引:21,自引:13,他引:8       下载免费PDF全文
通过分析位于青藏高原东北缘的区域数字地震台网30个台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了青藏高原东北缘上地幔各向异性图像.从得到结果看,青藏高原东北缘的各向异性快波方向基本上呈NW-SE方向,并有一顺时针旋转趋势,快、慢波时间延迟是0.70~1.51 s.青藏高原东北缘的SKS快波偏振方向与区域内主要构造断裂走向基本一致;各向异性快波偏振方向变化与区域内最小平均主压应力方向变化相似,也与由GPS测量得到的速度场方向变化相似.研究表明青藏高原东北缘上地幔物质在区域构造应力场的作用下,发生了顺时针旋转的形变以至流动,使得上地幔中橄榄岩的晶格排列方向平行于物质形变或流动方向,上地幔变形和上覆地壳变形可能存在垂直连贯变形特征.  相似文献   

6.
黎源  雷建设 《地球物理学报》2012,55(11):3615-3624
本研究使用中国地震局地壳应力研究所2010—2011年期间在云南地区布设流动地震台站以及青藏高原周边地区固定地震台站记录到的波形资料,提取了大量高质量Pn波到时资料.联合中国地震台网观测报告,我们获得了一个新的青藏高原东缘上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区内上地幔顶部存在明显横向不均匀性.古老盆地和稳定地台区如四川盆地、柴达木盆地、拉萨地块和阿拉善块体呈现为明显高波速异常,而祁连山至西秦岭褶皱带和川滇菱形块体北部等为相对弱高波速异常.在龙日坝断裂带以东的松潘—甘孜地块往南沿安宁河—则木河断裂至川滇菱形块体南部显示为一条近南北向明显低波速异常.三江褶皱系、缅甸弧俯冲带以及四川盆地东南等地区为明显低波速异常.地壳强震多发生在高波速异常边缘或高低波速异常过渡带上,表明地壳强震的孕育可能还与地幔构造作用存在一定相关性.青藏高原东构造结的各向异性快波方向呈顺时针旋转分布,与印度—欧亚碰撞密切相关.龙门山断裂带东西两侧的各向异性快波方向发生明显变化,由其西侧松潘—甘孜地块下方的NE向转变为四川盆地下方的近EW向,说明青藏高原物质流动遇四川盆地后分为NE和SW向两支.在川滇地区26°N以南地区上地幔顶部各向异性呈现近NS向与地表GPS观测相一致,但与SKS分裂结果存在较大差异,可能表明地壳与上地幔顶部形变表现为耦合现象,而上地幔顶部至岩石圈内部则存在解耦现象.  相似文献   

7.
青藏高原东部上地幔各向异性及相关的壳幔耦合型式   总被引:10,自引:0,他引:10  
对国家数字地震台网和云南、四川、甘肃、青海区域数字地震台网, 以及布设在川、滇、藏地区的宽频带流动地震台网共116个台站所记录的远震SKS波形资料作偏振分析, 采用叠加分析方法求得每一个台站的SKS快波偏振方向和快慢波的时间延迟, 获得青藏高原东部及其邻近地区的上地幔各向异性图像. 将该地区全球定位系统(GPS)的观测结果与上地幔各向异性分布相结合作地壳-地幔耦合变形的分析, 研究表明青藏高原内部和高原外部的云南地区具有不同的壳幔变形特征, 在高原的东缘地区(大致位于川滇西部的26°~27°N之间)存在一个壳幔变形的横向过渡带. 过渡带以南地区的快波偏振方向从滇西南的S60°~70°E逐渐转变到滇东南的近东西向, 以北的滇西北部和川西南部, 快波偏振方向为近似的南北向. 高原内部表现为强壳幔耦合型, 高原外部则属于壳幔解耦型. 这一横向过渡带与地表的断裂走向不一致, 但在地壳和上地幔, 其地球物理场(如: 地壳厚度, 布格重力异常和构造应力方向等)都具有横向过渡的特征. 该横向过渡带邻近东喜马拉雅构造结, 在板块边界动力学上有着重要的意义.  相似文献   

8.
青藏高原东南缘地震各向异性及其深部构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏东南缘是青藏高原物质东流的通道,为了更全面了解复杂的岩石圈结构和强烈的变形特征,本文介绍了青藏东南缘岩石圈各向异性的形态,综合其他研究者得到的该区域壳幔各向异性结果,增加了部分新的资料,更新了青藏东南缘岩石圈方位各向异性图像,探讨了区域深部构造意义.
基于近场小震、远震和背景噪声资料计算结果,青藏东南缘地震各向异性展现出独特的区域空间分布和垂向层次性分布形态,展现了3个主要特征.(1)青藏东南缘上地壳各向异性与地表变形测量结果相符,快剪切波偏振方向(即快波方向)呈现与地表运动特征一致的发散性,与主压应力方向一致,但受到地质构造的影响.(2)青藏东南缘下地壳方位各向异性展现了更好的方向一致性,但方位各向异性程度相对较弱,在红河断裂带西北端部和小江断裂带下方有两个下地壳低速区,其方位各向异性程度与上地壳相当.(3)青藏东南缘岩石圈方位各向异性,呈现南、北分区特征,南北分界线大致在26°20'N,快波方向在北部近似为NS方向,在南部近似为EW方向.
本文推测:(1)在26°20'N北侧的上地幔有较厚的高速体,高速体南侧边缘呈现出近EW走向的直立墙形构造,其南侧软弱的上地幔物质在EW方向上流动,导致了岩石圈方位各向异性特征在空间发生突然的变化,快波方向由北部的NS变为南部的EW方向;(2)小江断裂带是现今的华南地块的地壳西边界,但岩石圈尺度的方位各向异性展现出的趋势性表明,华南地块的上地幔物质越过了小江断裂带到达其西侧,揭示了华南地块与青藏地块接触碰撞造成的岩石圈物质变形和上地幔软流圈物质运移的深部图像.地震各向异性能揭示区域深部构造与介质变形的信息,不同观测资料的综合分析有助于获得更清晰的各向异性三维图像.  相似文献   

9.
青藏高原及邻区的Rayleigh面波的方位各向异性   总被引:1,自引:0,他引:1  
用Rayleigh波层析成像研究青藏高原地壳上地幔方位各向异性.收集了包括近年来在云南和川西藏东地区布设的流动台网在内的青藏高原及周边地区宽频带地震台站的记录,使得大部分地区有理想的射线覆盖,因此反演结果获得较高的分辨.模型分辨率的测试表明,大于400km范围内的各向异性特征以及大于2%的各向异性强度是可靠的.青藏高原内部的方位各向异性具有与大地构造相似的分区特征.高原东部大部分地区地壳各向异性强度大于2%,且表现为环绕喜马拉雅东构造结的顺时针旋转.在垂直方向上,高原内部的上地壳、下地壳和岩石圈地幔的各向异性方向基本一致,也与GPS所观测到的速度场和SKS快波方向基本一致,揭示高原下方的岩石圈变形是垂直连贯变形.在高原外部的云南地区,地壳和上地幔岩石圈方位各向异性的强度均小于2%,因此SKS波从核幔边界至台站间产生的分裂应主要归因于软流圈.  相似文献   

10.
基于青藏高原东北缘甘肃区域台网41个宽频带地震台站的远震记录资料,通过PKS、SKS和SKKS震相的剪切波分裂分析,获取了台站下方介质的各向异性分裂参数,得到该地区上地幔各向异性分布图像,并结合GPS速度场和地壳剪切波各向异性分析青藏高原东北缘各向异性形成机制及壳幔各向异性特征.分析结果认为,在阿尔金断裂带西侧,各向异性快波偏振呈NWW-SEE方向,与断裂带走向有一定夹角,与塔里木盆地向柴达木盆地俯冲方向一致,说明该地区上地幔物质变形主要受古构造运动的影响,属于"化石"各向异性.在祁连山-河西走廊构造区,XKS快波偏振呈NW-SE方向,一致性较好,与区域断层走向方向相同;由区域小震的地壳剪切波分裂分析得到的地壳剪切波快波偏振在该区域呈NE-SW方向,与相对于稳定欧亚大陆GPS运动速率一致,地壳和地幔快波偏振方向的差异表明壳幔变形可能有不同的形变机制.在陇中盆地及其周缘,由于处于活跃青藏地块与稳定鄂尔多斯地块之间的过渡带,相对于其他区域具有更加复杂的构造背景,地壳快波偏振和地幔快波偏振总体上呈NWW-SEE方向,说明壳幔变形机制可能相同;但不同台站结果之间存在一定离散性,推测是由于受局部构造特征差异性造成.  相似文献   

11.
滇西地区壳幔解耦与腾冲火山区岩浆活动的深部构造研究   总被引:4,自引:0,他引:4  
根据青藏东部边缘的深部地球物理资料,分析了滇西地区壳幔耦合和腾冲火山区岩浆活动的深部构造特征,确认了地幔各向异性与上地幔速度结构(包括P波速度和S波速度)的内在联系,指出产生这一结果的原因与以腾冲火山区为中心的地幔热物质上涌有关:上地幔顶部平均温度升高导致介质强度降低,在印支块体的侧向挤压或印缅块体的向东俯冲作用下发生韧性变形,造成滇西地区地幔各向异性的快波方向与青藏东部地壳块体的旋转方向不一致.此外,鉴于中下地壳低速层的横向非均匀性,估计韧性流动并非贯通青藏高原的东部边缘,而是被不同的构造块体和边界断裂限定在局部地区.总体而言,滇西地区下地壳的地震波速度和电阻率偏低,具备发生韧性变形的构造条件.作为地壳和上地幔之间的解耦层,它使得青藏东部地壳块体旋转产生的构造应力未能传输至上地幔.腾冲火山区的地壳结构与不同时期的岩浆活动有关,火山区东侧的高速结构代表了上新世时期火山通道内冷凝固结的岩浆侵入体或难以挥发的高密度残留物质,火山区西侧的低速结构反映了更新世以来持续至今的岩浆活动,壳内岩浆源主要分布在10~20km的深度范围内,横向尺度约为15~20km,有可能通过地壳深部的断裂与上地幔岩浆源区相连,估计腾冲火山区下方的岩浆活动将持续进行.  相似文献   

12.
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.  相似文献   

13.
本文使用川西密集地震台阵记录的面波资料,利用程函方程面波成像方法获得了周期为14—60 s的瑞雷波相速度及方位各向异性分布。结果显示:川滇菱形地块的川西北地块内部的低速异常明显,其下地壳各向异性快波方向以NS向为主,松潘—甘孜地块内部的低速异常稍弱,下地壳各向异性快波方向以NW?SESE向为主,表明川西北地块可能存在下地壳通道流,松潘—甘孜地块内部存在的通道流相对较弱;龙门山断裂带和丽江—小金河断裂两侧的速度结构和方位各向异性均有明显差异,可推测青藏高原内部的地壳流在东部和南部分别受高速、高强度的四川盆地和滇中地块阻挡,沿高原边界带发生了侧向流动;周期大于25 s的面波方位各向异性方向为NW?SE;与SKS分裂优势方向相近,说明四川盆地的剪切波各向异性可能主要源于上地幔;而龙门山断裂带附近壳幔各向异性较为复杂,面波方位各向异性与SKS分裂的NW?SE向弱各向异性存在差异,表明该处的剪切波各向异性可能来自地幔更深处,有待进一步研究。   相似文献   

14.
Fine structure of Pn velocity beneath Sichuan-Yunnan region   总被引:3,自引:0,他引:3  
We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.  相似文献   

15.
We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan, Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.  相似文献   

16.
青藏高原东南缘作为高原物质侧向挤出的前沿地带,是研究岩石圈变形机制、高原物质侧向逃逸和深部动力学等科学问题的关键地区之一.本文利用研究区内540个宽频带流动地震台站记录的远震面波资料,基于程函方程面波层析成像方法获得了青藏高原东南缘周期14~80 s瑞利面波相速度和方位各向异性分布图像.结果显示:14~20 s周期内,面波方位各向异性分布与断裂带的走向和最大主压应力的方向密切相关,可能受到了断裂带和区域构造应力场的共同作用.川滇菱形块体的北部次级块体及丽江—小金河断裂带附近随着面波周期的增加,各向异性快波方向从NS向逐步转变为NE-SW方向,并与断裂带大致平行,而其以南的攀枝花附近表现为高相速度和弱各向异性的特征.我们推测,在川滇菱形块体北部存在明显的下地壳流,流动方向与块体向南的挤出方向基本一致,该地壳流受到攀枝花附近的高速、高强度坚硬块体阻挡,其前缘向西南方向流动.川滇菱形块体中部地区由于坚硬块体的存在,下地壳没有明显的通道流.在红河断裂以西地区,30~60 s周期范围的面波各向异性快波方向和红河断裂大致平行,推测可能与渐新世至中新世早期印支地块向南东方向的挤出密切相关.研究区东北部,四川盆地南缘地壳各向异性以NE-SW和NEE-SWW向为主与SKS快波方向明显不同,推测主要与该地区地壳的早期构造变形有关同时也说明SKS各向异性主要来自上地幔介质;在研究区南部104°E以西的中长周期面波各向异性方向与SKS分裂研究获得的近EW快波方向基本一致,但在104°E以东地区面波各向异性较弱且快波方向与SKS的观测结果存在明显差异,我们推测东部SKS各向异性来源深度至少在150 km以下.  相似文献   

17.
中国大陆地质构造历史非常复杂,岩石圈长期积累的形变较大,而利用地震面波传播的各向异性是研究岩石圈形变特征的强有力手段. 本文利用双台窄带通滤波-互相关方法与基于图像分析的相速度频散曲线提取技术,提取Rayleigh面波相速度频散资料,进而反演中国大陆及邻区20~120 s周期Rayleigh面波相速度方位各向异性空间分布图像. 检测板测试结果显示:中国大陆大部分区域的方位各向异性横向分辨率在5°左右. 各向异性研究结果表明:中国大陆地壳上地幔方位各向异性特征存在显著的空间差异,反映出形变特征的空间差异;104°E以东地区地壳上地幔各向异性弱于西部地区,表明其构造变形总体弱于西部地区. 青藏地块及其东缘地区地壳与上地幔顶部变形最为强烈. 但东部的局部地区如华南地块与珠江口地区、鄂尔多斯盆地西南缘以及秦岭-大别造山带,较强的各向异性显示这些区域在不同时期也经历了强变形. 青藏地块内中短周期快波方向自西向东顺时针旋转变化可能指示板块碰撞与挤压过程中软弱物质的流变方向. 青藏地块西部中下地壳和上地幔形变模式相似,可能处于壳幔耦合状态;而中东部及东缘地区地壳上地幔形变模式存在明显差异,壳幔似乎不具备垂直连贯的形变特征. 位于青藏地块北部的塔里木盆地、柴达木盆地以及祁连褶皱带同样经历了强变形. 包括四川盆地在内的上扬子地块快波方向的变化显示中地壳与下地壳上地幔形变模式不同,而形变特征一致的下地壳与上地幔应为强耦合. 大约以103°E为界,龙门山断裂带可分为南西段和北东段,南西段处于低速区,而北东段位于高速区,且方位各向异性强度明显大于南西段;2008年5月12日汶川MS8.0级地震沿断裂带的单侧破裂模式除与北东段的高应力积累有关外,还可能与北东段地下介质物性存在密切关系,高速坚硬岩体的发育有利于应变能的积累与集中释放.  相似文献   

18.
Introduction The study of the upper mantle anisotropy in Yunnan area benefits the research of deep structure of Sichuan-Yunnan active block and the characteristics of deformation field, the analysis of the coupling relations among different layers of the earth and the promotion of understanding the relation between anisotropy and stress-strain field and geological construction processes. The research results would be of important significance for the interpretation of movement of plates, the …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号