首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
污水处理厂运行过程中大量释放甲烷(CH4)和氧化亚氮(N2O),是重要的人为温室气体排放源。基于2005—2015年统计资料和IPCC核算方法,估算了2005—2015年中国生活污水处理厂CH4和N2O排放,分析了其排放特征和影响因素;依据碳中和愿景设定3种减排情景(低减排、中减排和高减排),并预估了2020—2050年排放趋势和时空变化。结果表明:2005—2015年间污水处理厂温室气体排放量呈稳定增长趋势,CH4从1135.37万t CO2e上升至1501.45万t CO2e,N2O从2651.08万t CO2e上升为2787.05万t CO2e,年均增速分别为2.8%和0.5%。3种减排情景下,2020—2050年CH4和N2O排放量时间上呈先增后减趋势,低减排情景下CH4和N2O排放量分别于2036年和2025年达到峰值,分别为2431万和2819万t CO2e;中减排情景和高减排情景下CH4峰值点分别出现在2027和2025年,而N2O排放峰值均出现在2025年。2050年中减排和高减排情景下CH4排放量相较于低减排情景减排率约为47%和94%;2050年低减排、中减排和高减排情景下N2O排放量相较于2015年分别减排了12%、53%和95%。CH4和N2O排放量在空间上差异显著,华东地区排放量高,西北地区排放量低,东南区域所在省份排放量整体高于西北区域省份。影响因素中的经济发展程度与温室气体排放量密切相关。  相似文献   

2.
1999年在常熟农业生态站试验稻田于水稻主要生长季, 利用进口的条件采样装置对水稻低层大气N2O的垂直通量进行了观测, 并在2000年做了补充观测。结果如下:各生长季测定的N2O垂直通量值最多出现在0~2.0 mg·m-2·h-1之间;N2O垂直通量平均日变化最大值出现在下午;插秧期和收割后N2O垂直通量是各个生长季中最小的;观测到N2O负通量现象的出现;在稻田用条件采样技术观测到的低层大气N2O垂直通量大于国内用箱式法观测报道的土壤N2O排放通量。  相似文献   

3.
采用静态箱-气相色谱法在江汉平原开展早稻、晚稻、中稻、虾稻和再生稻5种稻作类型温室气体排放监测试验,研究不同稻作模式下稻田CH4和N2O排放特征、总增温潜势及温室气体排放强度,为准确评估稻田生态系统温室气体排放提供参考依据。结果表明:CH4排放集中在水稻前期淹水阶段,排放峰值最高为虾稻(85.7 mg·m-2·h-1),较其他稻作模式高71.7%~191.5%。N2O排放峰值主要出现于中期晒田和施肥阶段,排放峰值最高为再生稻(1100.7 μg·m-2·h-1),较其他稻作模式高16.8%~654.9%。CH4累积排放量从大到小依次为虾稻、再生稻、早稻、晚稻、中稻;N2O累积排放量从大到小依次为再生稻、早稻、晚稻、中稻、虾稻;总增温潜势从大到小依次为虾稻、再生稻、早稻、晚稻、中稻;温室气体排放强度从大到小依次为虾稻、早稻、再生稻、晚稻、中稻。CH4排放占比为82.9%~99.0%,稻虾田高排放主要原因为持续淹水时间长、秸秆还田和饲料投入,探究该模式CH4减排举措最为关键;中稻由于水旱轮作,稻田温室气体排放最低,可作为低碳减排的主要稻作类型。  相似文献   

4.
太湖地区冬小麦田与蔬菜地N2O排放对比观测研究   总被引:10,自引:0,他引:10  
2003年11月8日至2004年6月5日对太湖地区相邻的蔬菜地和稻麦轮作生态系统的冬小麦田,在当季不施肥情况下的N2O排放进行了田间同步对比观测,分析了N2O排放时间变化以及土壤湿度、土壤温度、土壤速效氮含量和农业管理措施对N2O排放的影响。研究结果表明,小麦播种前的耕翻(表层大约7cm土壤旋耕)处理不会明显改变稻麦轮作农田整个旱地阶段的N2O排放总量,但却使小麦生长季初期的N2O排放明显减弱69%(p<0.01,p为相关概率),使小麦生长季后期的N2O排放明显偏高2.6倍(p<0.05),而对其余时间段的N2O排放作用不明显。与长期实行稻麦轮作的旱地阶段农田相比,由稻田改种蔬菜20多年的蔬菜地,其整个观测期的N2O排放总量比免耕处理小麦田同期的排放高85%(p<0.05),比耕翻处理小麦田同期的排放高99%(p<0.01)。蔬菜地N2O排放偏高的原因是土壤速效氮,特别是铵态氮含量明显偏高(p<0.01)。  相似文献   

5.
CH4和N2O作为主要温室气体,自工业革命以来排放量急剧增加,已经被列入《京都议定书》要求控制它们的排放。本文利用高光谱分辨率的辐射传输模式,计算了CH4、N2O在晴空大气和有云大气条件下的瞬时辐射效率和平流层调整的辐射效率,以及它们的全球增温潜能(GWP)和全球温变潜能(GTP),并根据模式结果拟合了CH4和N2O的辐射强迫的简单计算公式。本文的研究表明:CH4和N2O在有云大气下的平流层调整的辐射效率分别为4.142×10-4 W m-2 ppb-1和3.125×10-3 W m-2 ppb-1 (1ppb=10-9),经大气寿命调整后的辐射效率分别为3.732×10-4 W m-2 ppb-1和2.987×10-3 W m-2 ppb-1,与IPCC(2007)的相应结果高度一致。CH4和N2O 100年的全球增温潜能GWP分别为16和266;100年的脉冲排放的全球温变潜能GTPP分别为0.24和233;持续排放的全球温变潜能GTPS分别为18和268。它们在未来全球变暖和气候变化中,影响仅次于CO2,仍然起着非常关键的作用。  相似文献   

6.
我国瓦里关山、兴隆温室气体CO2、CH4和N2O的背景浓度   总被引:14,自引:1,他引:13       下载免费PDF全文
为了研究中国大陆温室性气体CO2、CH4和N2O大气浓度的区域分布和变化特征以及与人类活动的关系,从1995~2000年,先后在青海瓦里关山全球大气基准站(36°18′N,100°54′E,3810 m)及河北中国科学院兴隆天文台(40°24′N,117°30′E, 940 m),利用不锈钢瓶取样和气相色谱法分析,观测了两地大气中温室气体CO2、CH4和N2O的浓度及其变化情况。结果表明:兴隆和瓦里关山站CO2、CH4和N2O的同期年平均浓度分别为376.7×10-6和373.5×10-6,1886×10-9和1831×10-9,316.7×10-9和314.9×10-9。从1995~2000年,兴隆站CO2、CH4和N2O的年增长率分别为1.95×10-6,9.02×10-9和0.75×10-9。而瓦里关山站从1997~2000年,CO2、CH4和N2O的年增长率分别为1.41×10-6,9.95×10-9和0.82×10-9。两地大气中三种气体的浓度与年增长率与全球同类台站的观测结果接近。同时也在一定程度上反映了各自不同的环境背景特征。  相似文献   

7.
玉米农田生态系统CO2通量的动态变化   总被引:3,自引:0,他引:3       下载免费PDF全文
利用2008年辽宁锦州农田生态系统野外观测站涡动相关系统通量观测资料,分析了玉米农田生态系统生长季(5-10月)及非生长季CO2通量动态变化。结果表明:玉米农田生态系统的非生长季日动态趋势不明显;生长季日动态明显,呈明显的U型曲线,CO2通量最大值出现在12:00时,为-1.19 mg·m-2·s-1;不同物候期的日动态也呈现U型曲线,各发育期CO2通量日最大值范围为0.07~-0.23 mg·m-2·s-1;玉米农田生长季生态系统净CO2交换日累积(NEE)为-652.8 g·m-2,非生长季NEE499.8 g·m-2,2008年碳收支-153.0 g·m-2,表现为碳汇。  相似文献   

8.
长期秸秆还田或秸秆焚烧会显著影响土壤肥力及土壤氮素循环,但该措施对土壤氨挥发的影响仍尚不明确。本研究利用秸秆还田长期定位试验小区,研究了无秸秆配施(CK),配施100%或50%秸秆(SI1, SI2)和配施50%秸秆焚烧(SI2B)对土壤氨挥发的影响。结果表明:氨挥发在小麦季持续38天,而玉米季持续7–10天。秸秆还田显著影响混施基肥期的土壤氨挥发而非表施追肥期。与CK相比, SI1和SI2分别降低了35.1%和16.1%的年累积氨排放,可能因为秸秆的高C/N比及较高的微生物活性促进了无机氮的固定降低土壤NH4+的浓度。SI2B比SI2增加了29.9%的氨排放。因此,长期合理的秸秆还田可为石灰性旱地土壤氨挥发减排提供选择和依据。  相似文献   

9.
废弃物处理温室气体排放的主要排放源之一为废水(生活污水和工业废水)处理CH4排放。根据统计资料和IPCC提供的方法,选择适合中国的排放因子,分析了中国废水处理2005-2010年的CH4排放特征和2000-2010年CH4产生的各驱动因子。并且根据中国的实际情况预测和分析了中国废水处理CH4排放趋势和排放潜力。结果显示:2010年中国生活污水处理CH4排放量为61.10万t,工业废水处理的CH4排放量为162.37万t,造纸等八大行业CH4排放量达到总CH4排放量的92%以上,2005-2010年的CH4排放量逐年增加;到2020年在减排情景下,生活污水处理CH4排放量为101.36万t,减排潜力为7.63万t,比2010年排放量增加了66%;工业废水处理CH4排放量233.93万t,减排潜力为25.99万t,比2010年排放量增加了44%。  相似文献   

10.
CO2减排的宏观经济代价对处于不同发展阶段的国家有着巨大的差异,对此给出科学的估计具有重要的科学和现实意义。本文运用基于投入产出的多目标规划对中国CO2减排的宏观经济成本进行了估算。结果表明:CO2排放控制对我国经济的影响十分显著,在目前条件下,我国2010年CO2减排的宏观经济成本为3100~4024元/t CO2;而且减排的力度越大,相应的单位减排的宏观经济成本越高。采掘业、石油行业、化学工业、金属冶炼等行业和部门是CO2的高排放部门,但同时也是实现减排较有潜力的部门。  相似文献   

11.
以高能耗为主要特征的工业部门是大气污染物和温室气体的重要排放源。为推动协同管控,文中结合生态环境部在重庆市组织开展的试点工作,对工业企业NOx污染治理协同控制温室气体的效应进行了量化分析。结果表明,以末端治理为手段的NOx治理措施协同控制温室气体的效果为负,即工业企业去除1 t NOx会直接或间接增加CO2排放1.811 t,采用SNCR技术且选择氨水等非尿素类脱硝剂有助于减少工艺过程和电力间接CO2排放。2017年工业企业NOx减排导致CO2排放增加52.57万t,占重庆市能源活动CO2排放总量的0.3%。电力碳排放因子降低1%和降低5%情景下,NOx减排的总协同度将分别提高0.9%和4.3%,尤以水泥制造业的协同效果改善最明显。减少尿素使用和提高电力低碳化程度有助于降低工业领域NOx减排对CO2排放的负协同效果。  相似文献   

12.
近千年东亚季风变化统计动力反演与驱动机制研究   总被引:1,自引:0,他引:1  
利用观测数据和非线性统计-动力学方法,构建了东亚季风变化的动力方程。量化了单因子强迫及各因子间相互作用在东亚季风演化中的相对贡献率,为东亚季风驱动机制研究提供了量化参考。研究发现:(1)过去千年东亚季风是多种因子共同作用下的复杂非线性动力系统。有些因子以起驱动作用为主,则有些以反馈调节作用为主,因子间交互作用与东亚季风演化存在耦合效应机制。(2)季风的驱动力主要来源于副热带太平洋海表温度、青藏高原动力热力强迫、CO2和N2O交叉项、太阳辐射和N2O交叉项、CO2与CH4交叉项等的耦合作用机制;调节作用主要是石笋δ18O指代的地理位置、单因子CO2浓度、太阳辐射变化、CH4与N2O交叉项、太阳辐射与ENSO交叉项等的耦合作用机制。温室气体(CO2、CH4与N2O)浓度对东亚季风演化的驱动与调节作用贡献较大。(3)通过动力反演机制推论副热带太平洋和热带西太平洋对东亚季风均有驱动作用,但主要驱动力来自副热带太平洋,即驱动东亚季风变化的主源地在副热带太平洋海区,次源地在热带西太平洋海区。(4)由海-陆温差对季风演变贡献大小推测石笋δ18O指代的也主要是夏季风信息。   相似文献   

13.
基于2014年辽宁省锦州地区雨养玉米农田生态系统涡度相关观测数据,分析了锦州地区玉米农田生态系统水汽通量的变化特征,并结合小气候观测数据探讨了水汽通量的调控机制。结果表明:2014年锦州地区玉米农田生态系统各月水汽通量均呈明显的单峰型变化规律,玉米农田生态系统生长季日平均水汽通量可达非生长季的10.31倍。锦州玉米农田生态系统7月水汽通量最大,日最大水汽通量可达0.1202 g·m-2·s-1。玉米农田年蒸散量为417.37 mm,非生长季蒸散总量为49.57 mm,略大于同期降水量;生长季前期5月和6月玉米农田蒸散量占降水量的比例分别为52.0%、71.0%;7月、8月和9月玉米农田的蒸散量大于降水量,其中7月玉米农田的蒸散量为降水量的3.00倍,而此期间正值玉米开花授粉阶段,水分胁迫严重影响玉米产量。玉米农田生长季的水汽通量与净辐射存在显著的正相关关系,同时水汽通量在一定程度上受气温和饱和水汽压差的调控影响。  相似文献   

14.
基于各国提交的165份国家自主贡献文件,以其中提出的减排目标为基准,尽可能充分地考虑了减排目标的范围不确定性、不同经济情景带来的碳强度减排目标不确定性、减排气体种类边界差异、碳排放达峰约束等因素,并通过蒙特卡洛模拟的方法对全球、各区域和主要经济体的温室气体排放总量、不确定度及其来源进行了定量分析。结果表明,到2030年全球温室气体排放总量将达到62.69 Gt CO2当量,其90%信度的置信区间为53.17~74.26 Gt CO2当量;由于未来经济总量预期不确定对排放量的影响最显著,因此,不同地区之间不确定性来源差异较大。同时,基于到2050年排放总量比2010年下降40%~70%的2℃目标排放情景,2030—2050年全球温室气体排放年均需要下降5.0% %。为了尽可能减小全球温室气体排放预期目标的不确定性和继续实现2℃目标,各国在进行自主贡献文件更新时进一步提出统计边界更为明确和统一且更有雄心的减排目标将是第一次全球盘点继续解决的重点问题。  相似文献   

15.
2020年1月23日起,武汉地区施行了严格的交通管控措施,对当地的人为活动产生了重大影响。本文基于地面监测站网和卫星遥感分析了管控期间武汉地区的主要大气成分的变化,并研究了人为排放下降对O3和细颗粒物(PM2.5)污染的影响。研究发现,由于管控期间施行机动车禁行政策,武汉地区的NO2浓度与2019年同期相比下降53.2%,挥发性有机物(VOCs)下降了25.1%;与NO2和VOCs的显著下降不同,O3日最大8小时滑动平均第90百分位浓度平均值与去年同期相比上升16.5%,尤其是2月温度同比增高超过5°C,紫外辐射增长超过100%,O3浓度显著高于去年同期,说明应基于O3前体物NOx和VOCs 活性种类的非线性定量关系加强协同减排;同时,管控期间PM2.5浓度与去年同期相比下降了35.6%,但是PM2.5浓度低值主要集中在风速较大、扩散较好的2月,其他时段PM2.5浓度下降并不明显;值得注意的是,与2月的显著下降不同,3月硝酸盐的浓度同比变化不大,说明导致NOx转化为硝酸盐的大气氧化能力并未受到较大削减,武汉地区颗粒物减排应基于颗粒物不同组分的形成机理,加强颗粒物一次排放源和关键前体物控制。  相似文献   

16.
为提高集装箱“公转铁”减排潜力评估结果的准确性,在分析“公转铁”减排原理的基础上,综合考虑空箱调运和重箱运输“门到门”运输链的干线运输、端点装卸、电力设备作业、集卡短驳、公铁中转等排放,引入反映活动类型、设备结构、能源生命周期排放的参数,对作业活动-方式结构-能耗强度-排放因子(ASIF)方法进行改进,建立“公转铁”减排潜力评估框架。以义乌—宁波港域出口集装箱运输为例,通过实地调研和公开文献获取数据,进行实证研究。结果表明,如果忽略必要因素将会导致每TEU运输需求“公转铁”的CO2减排率被高估0.50~36.73个百分点;最佳“公转铁”情景可减排3.42万t CO2,相应减排率为13.58%。研究结果可为政府相关部门客观评估“公转铁”的减排潜力、制定有效的“公转铁”政策措施提供理论支持。  相似文献   

17.
我国是全球二氟一氯甲烷(HCFC-22)的主要生产国,在HCFC-22的生产过程中,会产生大量的温室气体--三氟甲烷(HFC-23)。通过分析我国11个HFC-23减排清洁发展机制(CDM)项目的监测数据,确定HFC-23的排放因子,估算我国2000-2010年HFC-23的排放量,并预测了2011-2020年HFC-23的排放量和减排潜力。预计到2020年,我国HFC-23的排放量将达到2.3亿t CO2当量。如果HCFC-22企业能够实现自主减排,那么将为我国2020年CO2排放强度下降40%~45%的减排目标贡献3.2%~3.6%。  相似文献   

18.
本文应用LMDI分解分析方法对中国2000—2014年生产部门CO2排放量变化做因素分解分析,同时结合STIRPAT模型建立CO2预测模型,分析2017—2030年中国的CO2排放情况。结果表明,经济增长和能耗强度变化对中国CO2排放量变化的影响分别为114.9%、-22.6%。基于预测模型变量构建未来情景,设定正常路线、减排路线和激进路线3条路线,共包含9种情景。正常路线的低碳情景和减排路线的基准情景下可实现2025年达到CO2排放峰值,减排路线的低碳情景可实现2020年达到排放峰值。  相似文献   

19.
采用燃料生命周期方法,选取能耗、CO2、NOx和SO2排放等关键节能减排指标,对我国纯电动汽车、汽油汽车和混合动力汽车进行比较分析。通过对2010年和2020年两个时间点的考察,发现推广纯电动汽车并不一定有利于节能减排:在2010年技术水平和能源结构下,纯电动汽车的燃料周期能耗和CO2排放低于燃油汽车(包括汽油汽车和混合动力汽车),但NOx和SO2排放要高出燃油汽车50%以上;到2020年,若国家相关规划目标得以实现,纯电动汽车的燃料周期能耗和CO2排放将比2010年下降30%左右,NOx和SO2排放将比2010年下降80%以上,但由于发动机技术迅速改进等原因,届时纯电动汽车的燃料周期CO2、NOx和SO2排放等都高于混合动力汽车。在此基础上,进一步分析了纯电动汽车节能减排效益的不确定性,并提出改善纯电动汽车节能减排效益的政策建议,如将纯电动汽车的推广与电力系统改造行动结合起来、基于能耗水平对纯电动汽车和燃油汽车进行分类管理等。  相似文献   

20.
以中国钢铁行业为研究对象,对典型行业节能减排措施开展协同控制效应评估分析,试图为制定行业局地大气污染物与温室气体协同控制行动方案和规划提供依据。首先采用排放因子法计算各项措施对各类局地大气污染物和各类温室气体的减排量,并归一化为综合大气污染物协同减排量(ICER),进而采用协同控制效应坐标系、协同控制交叉弹性、单位污染物减排成本以及边际减排成本曲线等评估指标和方法开展协同控制效应评估。结果表明:基于2025年钢铁行业发展情景,6类28项节能减排措施可以实现每年减排SO2 51.80万t、NOx 71.35万t、PM10 29.07万t,还可协同减排CO2 6.64亿t;除末端脱碳和末端减污措施不具备协同减排效果外,多数措施均具有良好的协同控制效应;高温高压干熄焦(T3)措施单位污染物减排成本最低,超低排放改造(T28)措施减排成本最高;能效提升、原(燃)料替代类措施具有良好的财务收益;结构调整、能效提升和消费减量类措施减排潜力较大。未来应加强协同控制技术研发和协同控制规划,以实现行业局地大气污染物和温室气体协同控制综合效益优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号