首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北京地区不同天气条件下近地面大气电场特征   总被引:8,自引:2,他引:6       下载免费PDF全文
利用2004年8月—2005年11月近地面大气电场仪的观测资料, 对北京地区不同天气条件下近地面大气电场特征进行分析。结果表明:北京地区晴天近地面大气电场日变化呈双峰双谷, 谷值分别出现在北京时05:00和12:00, 峰值分别出现在07:00和23:00, 并且表现出一定的季节变化; 晴天大气电场的变化与气溶胶含量的变化有密切关系, 两者呈正相关; 晴天大气电场与绝对湿度之间也表现出很强的相关性, 在一定程度上反应了水汽对大气电场的作用; 沙尘天气下风速均达到一定强度, 近地面大气电场为负值, 并且变化剧烈, 电场强度与PM10之间呈现较强的负相关, 而电场强度与风速之间没有表现出明显的相关性。  相似文献   

2.
使用差分淌度粒径分析仪(TDMPS)和空气动力学粒径分析仪(APS)对上甸子区域本底站气溶胶(直径3nm~10μm)数谱分布特征进行观测。利用2008年的观测结果,分析了不同天气(包括沙尘天气、干洁天气和雾霾天气)条件下大气气溶胶数谱分布及其与气象要素和气团来源的关系。结果表明,沙尘天气条件下,上甸子站受西北方向的气团控制,风速较大,粗粒子数浓度明显增加,PM10的质量浓度可以迅速增加到毫克每立方米(mg·m-3)的量级。典型的"香蕉型"新粒子生成事件通常发生在比较干洁晴朗的天气条件下,西北气团主导,大气中背景气溶胶数浓度较低,核模态气溶胶数浓度迅速增长,气溶胶的粒径呈现明显的增长过程,核模态可以平稳地增长到约80nm,达到成为云凝结核的尺度。雾霾天气通常是在西南气团影响下,细颗粒物(1μm以下)不断累积、相对湿度不断升高的条件下发生的。雾霾天气条件下数谱分布的几何中值粒径出现在积聚模态,积聚模态数浓度也高于非雾霾天。个例研究表明,雾霾天气条件下,PM2.5质量浓度可以达到非雾霾天的10倍左右,其中以细颗粒物的贡献为主。在雾霾天气条件下,上甸子站数浓度较高的积聚模态颗粒物主要来自城区的传输,因此对背景地区气溶胶数谱的研究可以为解析城区气溶胶复杂来源提供依据。  相似文献   

3.
基于2015年秋末冬初华北地区频繁出现的大范围重污染天气过程,利用无人直升机搭载的气溶胶采样装置和激光粒子计数器对北京顺义及房山地区近地面大气颗粒物进行探测,分析了重雾霾天气大气颗粒物的质量浓度和数浓度廓线及其分布特征。结果表明:北京地区重雾霾天气过程粒径小于1.0μm的气溶胶数浓度随高度变化不明显,粒径大于1.0μm的气溶胶数浓度随高度呈弱的减小趋势,说明重污染天气条件下近地面层大气颗粒物的粒子数相对稳定,亚微米级气溶胶数浓度较高,而粗粒子气溶胶数浓度较低。基于无人直升机搭载的气溶胶采样装置采集的气溶胶样品的质量浓度廓线表明,50 m高度大气颗粒物质量浓度较高,最大浓度达700μg·m-3。  相似文献   

4.
一次持续性雾霾天气过程的阶段性特征及影响因子分析   总被引:4,自引:0,他引:4  
苗爱梅  李苗  王洪霞 《干旱气象》2014,32(6):947-953
应用常规与非常规气象观测资料及PM2.5浓度监测资料,对2013年1月20~24日山西区域一次持续性雾霾天气过程进行分析。研究发现:(1)本次雾霾天气过程具有明显的阶段性特征。2013年1月20日14时至23日11时,由于相对湿度的变化导致了3次轻雾转大雾过程;23日14~20时,由于PM2.5浓度的增大经历了1次轻雾转霾的天气过程。(2)地面弱的气压场和较小的风速以及PM2.5浓度的上升和相对湿度的增大为本次持续性雾霾天气过程的形成和发展提供了有利条件。(3)边界层逆温的存在是雾霾低能见度过程形成的必要条件,边界层有逆温层而不出现雾霾天气的条件是:相对湿度〈50%,PM2.5日均值浓度〈75μg·m-3;逆温层下相对湿度的大小是区别雾和霾天气的指标。(4)相对湿度和PM2.5是决定能见度大小的关键因子,其对能见度的影响体现出明显的阶段性特征,当相对湿度〈90%时,PM2.5浓度对能见度的作用强于相对湿度,是影响能见度变化的主要因子,但随着相对湿度的增大,其对能见度的影响相对增强,当能见度降至1 km以下时,相对湿度成为影响能见度变化的主要因子。  相似文献   

5.
上甸子秋冬季雾霾期间气溶胶光学特性   总被引:31,自引:10,他引:21       下载免费PDF全文
通过对2004年秋冬季(9—12月)4次雾霾天气过程在京、津背景地区——北京上甸子大气本底污染监测站观测的大气气溶胶光学特性的分析,发现该地区气溶胶光学特性受天气过程的影响很大。4次雾霾影响时段,平均气溶胶散射系数σ_(sca)、吸收系数σ_(abs)和单次散射反照率ω都远高于雾霾过后清洁时段的数值,其中气溶胶ω在雾霾影响时段为0.94~0.97,雾霾后为0.84~0.86,平均减小了0.1左右,表明雾霾天气有利于气溶胶的累积和生成。相比于光吸收性气溶胶,雾霾天气对光散射性气溶胶的增加更为有利,反映了二次气溶胶的产生及其对消光的贡献可能有较大增加。  相似文献   

6.
太原地区灰霾天气特征及影响因子分析   总被引:3,自引:1,他引:2  
利用2008~2012年太原常规地面气象观测资料、高空探测资料和大气污染物观测资料,对主要天气形势、典型气象要素以及空气污染状况下灰霾天气特征及形成机制进行了综合分析。结果表明:1)太原地区灰霾出现频率存在明显的季节变化,冬半年灰霾出现天数占全年的65.7%;一天中08:00(北京时间,下同)至13:00发生灰霾的频率较高。2)霾日静风频率较高,主导风向为偏东南风;重度灰霾天气出现时相对湿度较高。3)霾日的大气稳定度主要表现为稳定类;霾日平均混合层高度比非霾日低约100 m;08:00逆温出现次数高于20:00,霾时平均逆温强度和厚度高于非霾时。4)高压类型天气形势对灰霾的产生有重要影响,低压天气形势下较少出现灰霾天气。5)可吸入颗粒物、SO2和NO2浓度在非霾日比霾日分别下降32.6%、48.6%、21.7%;随着灰霾等级的增加,SO2和可吸入颗粒物的浓度有显著的增加。6)灰霾天气下到达地面的太阳辐射强度明显减弱,日照时数明显减少。  相似文献   

7.
本文主要使用大气电场监测系统资料,分析了太原市大气电场的日变化和年变化,着重分析了高污染地区大气电场值明显高于其他地区的典型特征。在其他不受污染的陆地区域,晴天电场值维持在+120V左右,而太原市会达到+600v以上。分析其原因主要是:太原市大气常年污染较严重,主要为气溶胶状态污染物,有粉尘、烟液滴、雾、降尘、飘尘、悬浮物等,导致大气电导率降低,大气电场强度显著增加。日变化为双峰双谷型,主高值出现在傍晚,次高值出现在午前;主低值出现在清晨,次低值出现在午后,与太阳和人类活动保持较好的一致性。年变化为单峰单谷型,极大值出现在冬季,极小值出现在夏季。  相似文献   

8.
江苏省能见度时空分布特征及其影响因子分析   总被引:4,自引:1,他引:3  
为探明江苏省能见度的时空分布特征及其影响因子,采用传统的统计学方法和主成分分析(PCA),详细分析了2012年江苏省70个自动气象站和常规气象观测台站的能见度、气压、相对湿度、风速等气象要素观测数据以及遥感大气气溶胶光学厚度(AOD)等资料,揭示了江苏省能见度的时空分布特征,评估了AOD、气象要素、雾霾天气等对江苏省能见度的影响。研究结果表明:(1) 江苏省的能见度呈早晨低、下午高的变化特征;(2) 空间分布差异较大且存在季节差异。具体而言,其年平均呈现东高西低分布特征,春季南低北高,夏季反之,而秋、冬两季则为东高西低;(3) 灰霾是导致江苏省能见度降低的最主要天气现象,其次为轻雾,雾引起低能见度的频次相对较少;(4) 江苏省能见度与AOD、相对湿度呈显著的负相关,与风速呈明显的正相关;(5) 通过数理统计分析发现,天气条件和污染物对能见度有重要影响。   相似文献   

9.
利用南京及其附近地区地面常规气象要素、颗粒物PM_(2.5)质量浓度逐时观测资料,以及CALIPSO资料、NCEP再分析资料、MODIS气溶胶光学厚度、南京站探空廓线等资料,结合天气学诊断分析和HYSPLIT后向轨迹模拟等方法,对2016年12月4—9日南京地区的一次雾霾天气进行分析。结果表明:此次雾霾天气过程具有区域性特征,南京上空气溶胶以沙尘型、污染沙尘型和污染大陆型为主,污染物主要来自西北方向的输送和本地的人为污染。地面弱高压均压场与高空稳定的天气形势叠加是此次雾霾天气过程的环流背景,同时南京上空盛行辐散下沉气流,下沉增温有利于逆温层的维持,使雾霾天气得以发展;偏北风携带的冷空气南下,正涡度平流控制南京上空,有利于雾霾的减弱消散,同时温度平流也影响了水汽凝结和相对湿度状况,进而使能见度发生相应变化。  相似文献   

10.
近年来,雾霾天气频发,加剧了空气质量的恶化。研究雾霾天气的成因,加强雾霾的预报能力,对指导公众出行和保护身体健康有着重要的意义。本文利用辽宁62个国家级自动站观测资料和NCEP再分析资料,对2015年11月7—14日辽宁一次持续性雾霾天气过程的环流背景、形成条件和持续原因进行分析,结果表明:(1)高层西南偏西气流,低层暖脊及地面倒槽和弱气压场的环流背景为雾霾天气的发生提供了有利的天气形势。(2)逆温是这次雾霾天气持续的重要原因。雾和霾天气逆温表现形式不同,大雾过程中,逆温层高度低,厚度小;霾过程中,逆温层高度高,厚度大,且表现为多个逆温层同时存在。(3)水汽条件是雾和霾转换的关键因素。当近地层空气相对湿度大于95%时,有利于雾的生成;而相对湿度在60%~70%时,有利于霾的形成。雾向霾转换时,比湿增大;霾向雾转换时,比湿下降。(4)近地面弱的上升运动、中高层弱的下沉运动是此次雾霾加强的动力机制。(5)雾霾出现前后气象要素特征差异明显,可为雾霾天气的预报提供重要参考。  相似文献   

11.
夏冬  吴志权  莫伟强  谭浩波 《气象》2013,39(6):759-767
通过研究广州番禺大气成分站的气溶胶颗粒物质量浓度(PM10和PM2.5)、黑碳浓度、臭氧浓度等大气成分要素,常规地面气象要素以及气流后向轨迹、垂直速度、位温和边界层高度等资料,结合热带气旋路径和天气形势对热带气旋外围下沉气流造成的一次珠三角地区连续灰霾天气过程的形成原因和变化特征进行了分析.由于热带气旋移动缓慢,其外围下沉气流使珠三角地区形成了层结稳定、静小风和晴朗少云的天气条件,导致珠三角地区出现连续的灰霾天气.在这次灰霾过程中,气溶胶粒子来源以本地源为主,并且以细粒子为主,PM2.5占PM10的比例接近70%,黑碳浓度占PM10的6.0%左右;在凌晨,由于边界层高度降至最低,垂直扩散条件差,同时相对湿度也达到峰值,气溶胶吸湿增长明显,易出现能见度低值.  相似文献   

12.
徐栋夫  曹萍萍  王源程 《气象》2020,46(7):948-958
利用微脉冲激光雷达观测数据、PM_(2.5)浓度数据、地面气象观测资料和探空数据对成都2017年1月1—6日连续出现的重污染过程进行分析研究。结果表明:激光雷达反演的消光系数演变与PM_(2.5)浓度值变化对应一致,PM_(2.5)浓度升高,近地面消光系数增大;反之,则近地面消光系数减小。对于此次过程,在无冷空气影响时,混合层高度和相对湿度的日变化对消光系数廓线有明显影响,混合层高度降低,大气环境容量减小,相对湿度增加,气溶胶吸湿增长,消光系数增大,地面污染加重。天空状况对气溶胶垂直分布影响显著,晴天或多云天气,早晨强逆温使得水汽和大量气溶胶集中在逆温层顶以下区域,地面污染严重;中午混合层发展,使得混合层内的气溶胶均匀混合,气溶胶层变厚,近地面消光系数显著减小,地面污染减轻。在前一日为晴天或多云天气,当天为阴天时,早上气溶胶明显分为两层,一层在近地面,另一层在残留层顶附近;中午由于垂直湍流增强,一部分残留层气溶胶向下混合至混合层内,使得混合层内的气溶胶粒子增多,地面污染加重,消光系数明显增加。近地面强逆温层、混合层高度降低、残留层气溶胶向下混合、相对湿度增加均是导致地面污染加重的原因。  相似文献   

13.
北京一次持续性雾霾过程的阶段性特征及影响因子分析   总被引:11,自引:1,他引:10  
利用北京地区高时间分辨率观测资料对2009年11月3—8日一次持续性雾霾天气过程中的气象因素和气溶胶演变特征进行了分析。结果表明,该次雾霾过程具有明显的阶段性特征,前期以霾为主,中期发展为雾霾交替,后期随着相对湿度减小再次转换为霾并最终消散。边界层逆温是低能见度过程形成的必要条件,但并不最终决定雾霾低能见度强度。相对湿度和PM2.5浓度是决定能见度大小的两个关键影响因子,对能见度的影响体现出阶段性特征。大部分时段PM2.5浓度是影响能见度的主要因子,当能见度小于1 km时,能见度变化更多受相对湿度影响。不同的情景计算表明,控制PM2.5浓度对于改善本次过程的能见度有重要作用。  相似文献   

14.
近地面大气电场数据EMD方法分析   总被引:2,自引:0,他引:2  
将经验模态分解(EMD)方法应用于2009年夏季近地面大气电场资料的分析,分解出雷暴和晴天天气大气电场的不同时间尺度变化分量,并提取两类天气状态下的大气电场振荡特征进行对比.结果表明:EMD方法适合应用于近地面大气电场资料的分析,雷暴天气大气电场以晴天天气大气电场作为背景场,包含了周期振荡平稳的晴天天气成分;晴天天气大气电场能量集中于长周期振荡分量,而雷暴电场能量主要是集中于短周期振荡分量.发生雷暴前,IMF(本征模态函数)1分量的中心频率会出现明显跳跃或其对应幅度明显增大的现象.利用这些特征对随机选出的38次过程进行预报效果检验,得到预警的探测概率为84.2%.  相似文献   

15.
2015年12月20—26日滨海新区出现持续性重度雾霾天气,空气质量指数AQI持续5 d大于200。利用大气观测、探测及污染物探测资料、NCEP再分析资料等,分析此次重度雾霾成因。结果表明,持续的纬向性环流及地面弱气压场,使逆温层建立;近地面切变线使污染物、水汽汇聚结合形成持续雾霾。逆温层接地后,当主要污染物PM2.5浓度350μg/m~3时,相对湿度即使小到45%,也会出现能见度2 km的重度霾;当PM_(2.5)浓度300μg/m~3、相对湿度90%时,会出现能见度0.1 km的严重雾霾。逆温层不接地,当PM_(2.5)浓度65μg/m~3时,即使相对湿度90%,能见度也会6 km,不能形成雾霾。因此逆温层形成后接地和污染物浓度是滨海新区持续重度雾霾产生的关键条件。  相似文献   

16.
利用河北省2005年10月份的3次气溶胶飞机观测资料和宏观天气资料,综合分析石家庄地区不同天气条件下气溶胶的垂直分布和尺度谱分布特征。分析结果表明:气溶胶浓度的分布与大气环境情况密切相关。气溶胶数浓度最大值的变化范围是103~104cm-3,平均数浓度为103cm-3,粒子平均直径为0.120~0.150μm;21日近地面有霾,相对湿度为58%,近地面气溶胶浓度较17和29日略低,但粒子平均直径(0.165μm)比其余两次要大,可见相对湿度较大,大气中水汽含量较多,有利于小粒子凝结水汽,使粒子直径增大;逆温层结下,粒子在逆温层下累积,无逆温时数浓度最大值出现在近地面附近。气溶胶粒子谱呈单峰分布。  相似文献   

17.
宁夏典型沙尘天气条件下气溶胶分布特征研究   总被引:1,自引:0,他引:1  
利用2006-2010年期间云—大气气溶胶激光雷达红外探索卫星(CALIPSO)星载激光雷达(CALIOP)数据和宁夏地区常规气象观测资料,分析研究了典型沙尘天气条件下宁夏地区大气气溶胶光学性质的分布特征。结果表明:CALIPSO资料能有效地反映宁夏地区沙尘气溶胶相关特性的垂直分布特征。在沙尘天气下,处于贺兰山背风坡海拔较高区域的沙尘可以被抬升到对流层中层以上,近地层大气中主要以粗粒子为主,不规则的非球形气溶胶随着高度的增加而增加,高层大气中以波长比在0.4~2.0之间的粗粒子为主、退偏比在0.4以上的不规则非球形气溶胶在7 km、10 km左右高度出现极大值,这与沙尘天气下湿度垂直分布廓线相一致。在晴空天气条件下,退偏比均在0.2以下,波长比主要在0.2~0.4之间,且两者出现频率随高度的变化较小。在沙尘天气下宁夏地区气溶胶光学厚度主要分布在0.60~2.00之间,晴空天气下主要分布在0.33~0.43之间。  相似文献   

18.
利用2011年深圳国家基本气象站及自动气象站的能见度、相对湿度和大气成分资料,分析了深圳市区和郊区灰霾特征、差异及成因。结果表明,灰霾天气市区多于郊区,春季、夏季、秋季是短历时灰霾出现频次最高,而冬季是长历时灰霾出现频次最高,主要是由于冬季易产生灰霾的大尺度天气系统影响时间长造成的。市区和郊区的年总灰霾时数日变化规律不同,市区呈“双峰型”,在早晚交通高峰期出现最大值;郊区呈“单峰型”,在午后出现最大值 ,主要原因是市区和郊区气溶胶可溶性离子日变化特征不同。午后,郊区年总灰霾时数竟然比市区多,原因有两方面:(1) 由于郊区沿海海盐粒子在午后强烈的氧化作用下,通过氯损耗产生了更多的气溶胶细粒子 ;(2) 郊区沿海午后湿度明显高于市区,细粒子的吸湿增长比市区更强,因此灰霾出现概率比市区大。   相似文献   

19.
利用气象观测资料和PM2.5质量浓度资料,统计分析宝鸡市2013年冬季重度雾霾污染日时空特征,探讨雾霾污染日各气象要素的特征。分析发现:12013年12月—2014年2月宝鸡出现重度雾霾污染日28d,为近5a来最多。2重度雾霾污染天气过程多持续4~8d;污染严重时次出现在19—24时,具有显著日变化。3宝鸡市东部污染重于西部,弱东风利于重度雾霾污染出现(加剧),转为西风时污染减弱。4重度雾霾污染天气的主要成因包括,有利的天气形势(地面关中处于高压底部或后部)维持,大气混合层高度低,相对湿度较大(70%左右),风速较小(2m/s),连续无降水日长。5重度雾霾污染主要为本地污染物聚集所致。  相似文献   

20.
根据单站雾霾日数和区域雾霾过程的确定方法,挑选2014年12月16日至2015年1月27日四川盆地典型雾霾过程,结合空气质量指数(AQI)、污染物质量浓度、气象要素特征和大气环流背景,研究此次持续雾霾天气的产生、演变及转化特征。结果表明:(1)此次雾霾过程表现出强度强、持续时间长、发生范围广的显著特点。(2)AQI和污染物质量浓度的变化与雾霾天气过程高度一致,本次雾霾过程的主要污染物为PM_(2.5),其次是PM_(10)。(3)此次过程出现了不同强度的污染物积累、到达峰值及急速减弱阶段,雾霾天气过程的强弱与天气形势、边界层垂直结构密切相关,与历史同期相比,这次超长雾霾过程盆地平均气温偏高1.24℃,降水偏少34.77%,日照时数偏多10.33 h,相对湿度偏低2.67%,风速基本持平略偏大,稳定的大气环流形势为雾霾天气和严重污染提供了持续稳定的大气环境场;强逆温层结、边界层的下沉运动、地面弱风场中的辐合均使水汽和污染物存留在近地层不易向高空扩散,造成雾霾天气持续。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号