首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
Nowadays, ensemble forecasting is popular in numerical weather prediction (NWP). However, an ensemble may not produce a perfect Gaussian probability distribution owing to limited members and the fact that some members significantly deviate from the true atmospheric state. Therefore, event samples with small probabilities may downgrade the accuracy of an ensemble forecast. In this study, the evolution of tropical storms (weak typhoon) was investigated and an observed tropical storm track was used to limit the probability distribution of samples. The ensemble forecast method used pure observation data instead of assimilated data. In addition, the prediction results for three tropical storm systems, Merbok, Mawar, and Guchol, showed that track and intensity errors could be reduced through sample optimization. In the research, the vertical structures of these tropical storms were compared, and the existence of different thermal structures was discovered. One possible reason for structural differences is sample optimization, and it may affect storm intensity and track.  相似文献   

2.
The initial ensemble perturbations for an ensemble data assimilation system are expected to reasonably sample model uncertainty at the time of analysis to further reduce analysis uncertainty. Therefore, the careful choice of an initial ensemble perturbation method that dynamically cycles ensemble perturbations is required for the optimal performance of the system. Based on the multivariate empirical orthogonal function (MEOF) method, a new ensemble initialization scheme is developed to generate balanced initial perturbations for the ensemble Kalman filter (EnKF) data assimilation, with a reasonable consideration of the physical relationships between different model variables. The scheme is applied in assimilation experiments with a global spectral atmospheric model and with real observations. The proposed perturbation method is compared to the commonly used method of spatially-correlated random perturbations. The comparisons show that the model uncertainties prior to the first analysis time, which are forecasted from the balanced ensemble initial fields, maintain a much more reasonable spread and a more accurate forecast error covariance than those from the randomly perturbed initial fields. The analysis results are further improved by the balanced ensemble initialization scheme due to more accurate background information. Also, a 20-day continuous assimilation experiment shows that the ensemble spreads for each model variable are still retained in reasonable ranges without considering additional perturbations or inflations during the assimilation cycles, while the ensemble spreads from the randomly perturbed initialization scheme decrease and collapse rapidly.  相似文献   

3.
This paper introduces a new approach for the initialization of ensemble numerical forecasting: Dynamic Analogue Initialization (DAI). DAI assumes that the best model state trajectories for the past provide the initial conditions for the best forecasts in the future. As such, DAI performs the ensemble forecast using the best analogues from a full size ensemble. As a pilot study, the Lorenz63 and Lorenz96 models were used to test DAI’s effectiveness independently. Results showed that DAI can improve the forecast significantly. Especially in lower-dimensional systems, DAI can reduce the forecast RMSE by ~50% compared to the Monte Carlo forecast (MC). This improvement is because DAI is able to recognize the direction of the analysis error through the embedding process and therefore selects those good trajectories with reduced initial error. Meanwhile, a potential improvement of DAI is also proposed, and that is to find the optimal range of embedding time based on the error’s growing speed.  相似文献   

4.
Diagnostics are presented from an ensemble of high-resolution forecasts that differed markedly in their predictions of the rapid intensification(RI)of Typhoon Rammasun.We show that the basic difference stems from subtle differences in initializations of(a)500-850-h Pa environmental winds,and(b)midlevel moisture and ventilation.We then describe how these differences impact on the evolving convective organization,storm structure,and the timing of RI.As expected,ascent,diabatic heating and the secondary circulation near the inner-core are much stronger in the member that best forecasts the RI.The evolution of vortex cloudiness from this member is similar to the actual imagery,with the development of an inner cloud band wrapping inwards to form the eyewall.We present evidence that this structure,and hence the enhanced diabatic heating,is related to the tilt and associated dynamics of the developing inner-core in shear.For the most accurate ensemble member:(a)inhibition of ascent and a reduction in convection over the up-shear sector allow moistening of the boundary-layer air,which is transported to the down-shear sector to feed a developing convective asymmetry;(b)with minimal ventilation,undiluted clouds and moisture from the down-shear left quadrant are then wrapped inwards to the up-shear left quadrant to form the eyewall cloud;and(c)this process seems related to a critical down-shear tilt of the vortex from midlevels,and the vertical phase-locking of the circulation over up-shear quadrants.For the member that forecasts a much-delayed RI,these processes are inhibited by stronger vertical wind shear,initially resulting in poor vertical coherence of the circulation,lesser moisture and larger ventilation.Our analysis suggests that ensemble prediction is needed to account for the sensitivity of forecasts to a relatively narrow range of environmental wind shear,moisture and vortex inner-structure.  相似文献   

5.
The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The "true" soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d^-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.  相似文献   

6.
A conceptual coupled ocean-atmosphere model was used to study coupled ensemble data assimilation schemes with a focus on the role of ocean-atmosphere interaction in the assimilation. The optimal scheme was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates observations in both the atmosphere and ocean. The assimilation of synoptic atmospheric variability that captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only the atmospheric, but also oceanic states. The synoptic atmosphere observation was especially important in the mid-latitude system, where oceanic variability is driven by weather noise. The assimilation of synoptic atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the subsequent forecasts, reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric observation was able to further improve the oceanic state estimation directly through the coupled covariance between the atmosphere and ocean states. Relative to the mid-latitude system, the tropical system was influenced more by ocean-atmosphere interaction and, thus, the assimilation of oceanic observation becomes more important for the estimation of the ocean and atmosphere.  相似文献   

7.
Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of ensemble prediction in the warm season was evaluated. Because a finite ensemble size causes sampling error in the full forecast probability distribution function (PDF), ensemble size is closely related to the efficiency of the ensemble prediction system. Prediction capability according to doubling the ensemble size was evaluated by increasing the number of ensembles from 24 to 48 in MOGREPS implemented at the KMA. The initial analysis perturbations generated by the Ensemble Transform Kalman Filter (ETKF) were integrated for 10 days from 22 May to 23 June 2009. Several statistical verification scores were used to measure the accuracy, reliability, and resolution of ensemble probabilistic forecasts for 24 and 48 ensemble member forecasts. Even though the results were not significant, the accuracy of ensemble prediction improved slightly as ensemble size increased, especially for longer forecast times in the Northern Hemisphere. While increasing the number of ensemble members resulted in a slight improvement in resolution as forecast time increased, inconsistent results were obtained for the scores assessing the reliability of ensemble prediction. The overall performance of ensemble prediction in terms of accuracy, resolution, and reliability increased slightly with ensemble size, especially for longer forecast times.  相似文献   

8.
As part of NOAA’s "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88 Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.  相似文献   

9.
With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers.  相似文献   

10.
Traditional precipitation skill scores are affected by the well-known“double penalty”problem caused by the slight spatial or temporal mismatches between forecasts and observations. The fuzzy (neighborhood) method has been proposed for deterministic simulations and shown some ability to solve this problem. The increasing resolution of ensemble forecasts of precipitation means that they now have similar problems as deterministic forecasts. We developed an ensemble precipitation verification skill score, i.e., the Spatial Continuous Ranked Probability Score (SCRPS), and used it to extend spatial verification from deterministic into ensemble forecasts. The SCRPS is a spatial technique based on the Continuous Ranked Probability Score (CRPS) and the fuzzy method. A fast binomial random variation generator was used to obtain random indexes based on the climatological mean observed frequency, which were then used in the reference score to calculate the skill score of the SCRPS. The verification results obtained using daily forecast products from the ECMWF ensemble forecasts and quantitative precipitation estimation products from the OPERA datasets during June-August 2018 shows that the spatial score is not affected by the number of ensemble forecast members and that a consistent assessment can be obtained. The score can reflect the performance of ensemble forecasts in modeling precipitation and thus can be widely used.  相似文献   

11.
集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用   总被引:7,自引:8,他引:7  
朱江  汪萍 《大气科学》2006,30(5):871-882
此文目的是讨论污染源反演问题的统计方法.基于Bayes估计理论,该文将资料同化中的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波应用在污染源反演问题中.在详细给出污染源反演的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波的严格数学表达后,用一个简单的模型演示了集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的可行性,并且通过对比理想试验结果比较了集合卡尔曼平滑和集合卡尔曼滤波方法在反演污染源排放的效果,讨论了观测误差和污染源先验误差估计对反演结果的影响.试验结果表明在观测间隔小和观测误差小的情况下,集合卡尔曼滤波和集合卡尔曼平滑都可以有效地反演出随时间变化的污染源排放.当观测误差增大时,集合卡尔曼滤波和集合卡尔曼平滑的反演效果都有一定降低,但是反演误差的增加少于观测误差的增加,同时集合卡尔曼平滑(Ensemble Kalman smoother,简称EnKS)对观测误差比集合卡尔曼滤波(Ensemble Kalman filter,简称EnKF)更为敏感.当观测时间间隔较大时,EnKF不能对没有观测时的污染源排放进行估计,仅能对有观测时的污染源排放进行较好的反演.而EnKS可以利用观测对观测时刻前的污染源排放进行反演,因此其效果明显好于EnKF,并且在观测时间间隔较大的情况下依然可以较好地反演出污染源排放.试验结果还显示污染源排放的先验误差估计对反演的结果有较大影响.  相似文献   

12.
集合卡尔曼滤波同化多普勒雷达资料的数值试验   总被引:25,自引:10,他引:25  
利用集合卡尔曼滤波(EnKF)在云数值模式中同化模拟多普勒雷达资料,并考察了不同条件下EnKF同化方法的性能.结果显示,经过几个同化周期后,EnKF分析结果非常接近真值.单多普勒雷达资料EnKF同化对雷达位置不太敏感,双雷达资料同化结果在同化的初期阶段比单雷达资料同化结果准确.同化由反射率导出的雨水比直接同化反射率资料更有效,联合同化径向速度和雨水有利于提高同化分析效果.协方差对EnKF同化效果起着非常重要的作用,考虑模式全部预报变量与径向速度协方差的同化效果比仅考虑速度场与径向速度协方差的同化效果好.雷达资料缺值降低了同化效果,此时增加地面常规观测资料的同化可以明显提高同化分析效果.EnKF同化技术对雷达观测资料误差不太敏感.初始集合对同化分析有较大影响.EnKF同化受集合大小和观测资料影响半径.同化对模式误差较敏感.利用EnKF同化双多普勒雷达资料,分析了一次梅雨锋暴雨过程的中尺度结构.结果表明,EnKF同化技术能够从双多普勒雷达资料反演暴雨中尺度系统的动力场、热力场和微物理场,反演的风场是较准确的,反演的热力场和微物理场分布也是基本合理的.中低层切变线是此次暴雨的主要动力特征,对流云表现为低层辐合、高层辐散并有垂直上升运动伴随,其热力特征表现为低层是低压区,高层为高压区,中部为暖区而上、下部为冷区,水汽、云水和雨水分别集中在对流云体内、上升气流区和强回波区.  相似文献   

13.
基于WRF中尺度模式,采用集合卡尔曼滤波方法同化中国岸基多普勒天气雷达径向速度资料,对2015年登陆台风彩虹(1522)进行数值试验。从台风强度、路径、结构等方面验证了同化效果,并对不同区域雷达观测资料的同化敏感性进行讨论。试验结果表明:在同化窗内同化分析场台风位置误差相比未同化平均减小15 km,最多时刻减小38 km,同化资料时次越多,确定性预报路径误差越小。同化雷达资料后较好地反映出台风彩虹(1522)近海加强过程,台风中心最低气压同化分析和预报误差相比未同化最大减小超过25 hPa,台风眼的尺度、眼墙处对流非对称结构相比未同化与观测更加接近。试验还表明:台风内核100 km范围内的雷达观测对同化效果影响最大,仅同化这部分资料(约占总量的20%)各方面效果与同化全部资料相近,而仅同化100 km以外资料效果明显不及同化所有资料。仅同化台风内核雷达观测资料可以在不影响同化效果的前提下,使集合同化计算机时减小为原来的1/3,该策略可为台风实际业务预报提供一定参考。  相似文献   

14.
An ensemble Kalman filter (EnKF) combined with the Advanced Research Weather Research and Forecasting model (WRF) is cycled and evaluated for western North Pacific (WNP) typhoons of year 2016. Conventional in situ data, radiance observations, and tropical cyclone (TC) minimum sea level pressure (SLP) are assimilated every 6 h using an 80-member ensemble. For all TC categories, the 6-h ensemble priors from the WRF/EnKF system have an appropriate amount of variance for TC tracks but have insufficient variance for TC intensity. The 6-h ensemble priors from the WRF/EnKF system tend to overestimate the intensity for weak storms but underestimate the intensity for strong storms. The 5-d deterministic forecasts launched from the ensemble mean analyses of WRF/EnKF are compared to the NCEP and ECMWF operational control forecasts. Results show that the WRF/EnKF forecasts generally have larger track errors than the NCEP and ECMWF forecasts for all TC categories because the regional simulation cannot represent the large-scale environment better than the global simulation. The WRF/EnKF forecasts produce smaller intensity errors and biases than the NCEP and ECMWF forecasts for typhoons, but the opposite is true for tropical storms and severe tropical storms. The 5-d ensemble forecasts from the WRF/EnKF system for seven typhoon cases show appropriate variance for TC track and intensity with short forecast lead times but have insufficient spread with long forecast lead times. The WRF/EnKF system provides better ensemble forecasts and higher predictability for TC intensity than the NCEP and ECMWF ensemble forecasts.  相似文献   

15.
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.  相似文献   

16.
兰伟仁  朱江  Ming XUE 《大气科学》2010,34(3):640-652
本文在假定模式无偏差的情况下, 利用一次风暴过程的模拟多普勒雷达资料进行一系列风暴天气尺度的集合卡尔曼滤波资料同化试验, 检验集合卡尔曼滤波在风暴天气尺度资料同化方面的效果, 并验证各集合卡尔曼滤波参数对同化效果的影响。试验结果表明, 集合卡尔曼滤波能有效地应用于风暴尺度的资料同化; 40个集合成员以及6 km的局地化尺度能较好地滤除采样误差造成的虚假相关, 同时可以将观测信息传递到无观测的模式格点; 利用背景场加上空间平滑的高斯型随机扰动生成初始成员的方式较未经过平滑的方式有更好的分析效果; 背景场扰动方法能够提高样本的离散度; 只同化反射率的同化试验表明, 反射率的同化效果较明显, 也证明了集合卡尔曼滤波在非常规资料同化中的作用; 增加径向风资料同化的效果优于只进行反射率同化的结果。  相似文献   

17.
This paper evaluates the quality of the ensemble hydrological reforecasts obtained using the 18-year ensemble meteorological reforecast dataset available from the Canadian Centre for Meteorological and Environmental Prediction (CCMEP). This study focuses on four large watersheds in the province of Quebec. A distribution-based scaling (DBS) post-processing method is used to correct the 18-year ensemble precipitation reforecasts. An Ensemble Kalman Filter (EnKF) assimilation technique is also assessed to improve the initial conditions of the hydrologic model. There is a slight improvement in performance and reliability after applying the DBS approach to precipitation reforecasts, but this technique induces a reduction in the spread. The impact of the integration of the post-processed precipitation into the hydrologic model is also quite marginal. However, the addition of an EnKF provides better ensemble hydrological reforecasts with high performance, reliability, and skill, especially in the first reforecast horizons. The best results are, however, generally obtained when using DBS and an EnKF together. Combining DBS and an EnKF, hydrological forecasts for the next two weeks are obtained using the CCMEP reforecast and also the second generation Global Ensemble Forecast System (GEFS v2) reforecast, which is considered a reference. Forecasts of comparable skill and spread are obtained, with CCMEP-based forecasts showing better spread during the first week, and GEFS v2–based reforecasts showing better skill and spread during the second week. Finally, it is shown that the two meteorological reforecast products assessed in this study have similar economic value for hydrological forecasting applications based on the cost–loss model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号