首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
东北冷涡诱发的一次MCS结构特征数值模拟   总被引:22,自引:4,他引:22  
应用MM5模式对2002年7月12日东北冷涡诱发的强风暴进行了数值模拟,较成功地模拟出了MCS强对流风暴结构。东北冷涡南部锋区斜压扰动及有利的潜在不稳定层结为MCS产生提供了环境条件。MCS在发展阶段,天气尺度抬升使不稳定能量积累,低层中尺度能量锋区及中尺度气旋性环流加强使中尺度辐合加强,产生中尺度强上升气流冲破中层稳定层结,倾斜上升逐渐发展为垂直上升。MCS强风暴成熟阶段地面气压场表现为强的雷暴高压,并有弱的前导低压和尾随低压配合。对应于雷暴高压的边界层冷丘与南部的暖湿气流形成的θe不连续线加强了低层气流的辐合抬升。前导低压与800~700hPa暖心低压扰动合并在一起,是由地面辐合、上升气流抽吸、潜热增温共同形成的低压扰动,对对流系统的维持和移动有重要作用。  相似文献   

2.
吴涛  黄小彦  牛奔 《湖北气象》2014,33(3):228-238
使用高空天气图、NCEP(National Centers for Environmental Prediction)再分析场、新-代天气雷达及地面观测资料分析了导致2012 年7 月12 日鄂东北强降水的准静止中尺度对流系统MCS(Mesoscale Convective System)的演变特征,解释了MCS 维持准静止状态的成因.南支槽、东北冷涡、副热带高压是MCS 形成的主要大尺度天气系统,MCS 形成于副高外围西南气流和冷涡高空槽底部之间,副高位置稳定和冷涡高空槽缓慢南压有利于MCS 稳定少动,且随南支槽加深西南急流的建立有利于持续向MCS 输送水汽和不稳定能量.MCS 表现为单个中α尺度对流云团,成熟时外形呈椭圆型,边缘光滑,亮温低值中心位于MCS 西侧,且有指状突起,亮温低值区域对应中β尺度对流回波带,强降水组合反射率因子为45~55 dBz,回波顶高18 km,中心高度低于6 km,MCS 维持准静止状态.强降水与MCS 亮温低值中心、强回波带相对应,降水效率高,持续时间长.中尺度分析表明,辐合线的维持是MCS 呈准静止状态的主要原因.地形阻挡产生的地面辐合线触发了初始对流,强降水在地面产生冷池、雷暴高压及弧状出流边界,出流边界上风速辐合较强且温度梯度较大区域又触发出新的对流,并在气压梯度力推动下向东南方向传播,抵消了环境风平流运动.MCS 低层主要有西南气流和西北气流,西北气流逐渐从MCS 后部进入,与西南气流形成辐合线,西南气流沿西北气流爬升产生对流,形成自东南向西北倾斜的中尺度锋面,地面出流边界和高空辐合线是中尺度锋面在风场的表现形式,对回波加强、维持有重要作用,且高空辐合线引起的后向传播也抵消了环境风平流运动.  相似文献   

3.
利用常规观测资料、自动站资料、三亚雷达资料、NCEP再分析数据和GFS预报场数据对2019年5月9日影响三亚的一次雷雨大风天气过程进行分析,得到如下结论:高空干冷槽与低层西南暖湿空气配合,三亚东部陆地的东北风与西南弱海风形成的中尺度地面辐合线,为本次过程提供良好的水汽、热力不稳定、动力抬升和触发条件。中尺度对流辐合线的发展与合并是整个对流维持的关键,对流后侧大风入流和前侧零散弱回波线,为雷雨大风的发生提供较好的预警。海南岛西南部海上生成的强对流带移向海南岛时伴随着向东北方向倾斜的下沉气流,该气流下沉到达近地面后向两侧涌升,涌升气流与背景风辐合促进了中尺度对流加强。强对流带经过三亚前后,三亚区域近地面出现西南风向东北风的转变,低层垂直风切变和涡度增加,有利于对流进一步发展加强。风廓线雷达对中尺度对流辐合线内部风场有较好的指示作用。  相似文献   

4.
张立祥  李泽椿 《气象》2008,34(12):3-10
针对短波辐射对东北冷涡强对流的可能影响,应用MM5模式对2002年7月12日东北冷涡诱发的强风暴个例进行了数值模拟试验.发现在东北冷涡天气尺度环流背景下,大气接收的短波辐射通过激发中尺度环流影响强对流的发生时间,而不是通过影响不稳定能量的积累触发强对流;地面短波辐射对对流层低层大气的加热作用是触发本次东北冷涡强对流的重要条件.地面短波辐射加热在对流层低层产生中尺度辐合扰动及对流不稳定层结共同促使了对流的爆发和维持.  相似文献   

5.
2007年7月18—19日山东省大暴雨天气分析   总被引:11,自引:1,他引:10  
应用常规观测资料、中尺度站资料、卫星云图、雷达回波和T213数值预报产品,对2007年7月18-19日山东省大范围对流性暴雨天气的成因进行了分析.分析了产生暴雨的天气系统特征,大气垂直稳定度和对流有效位能,产生暴雨的水汽条件和动力触发机制,给出了产生暴雨的对流云团演变特征.研究结果表明,对流性大暴雨是由东北冷性低涡、前倾槽、副热带高压边缘西南暖湿气流和冷空气的共同影响产生的.低层强盛的偏南气流建立起水汽通道,把水汽源源不断地向暴雨区输送.前倾槽结构和低层增温增湿使得大气强烈的对流不稳定和对称不稳定.低层较强的东北气流与强盛的西南暖湿气流侧向汇合,垂直涡度增大,辐合上升运动增强,对流不稳定能量释放,产生中尺度对流云团.地面冷锋前生成中尺度低压,加强了辐合上升运动.高层辐散与低层辐合相配合,有利于上升运动发展和维持.卫星云图中显示两个对流云团合并发展形成中尺度对流复合体(MCC).雷达回波中表现为两个东西向的带状强降水回波相衔接,缓慢南移;暴雨区上空东北气流、西北气流和西南气流相汇合;低层东北气流逐渐增大.冷空气从低层侵入.  相似文献   

6.
一次冷涡发展阶段大暴雨过程的中尺度对流系统研究   总被引:7,自引:0,他引:7  
利用2009年东北暴雨试验资料、常规气象观测资料、自动站资料、FY-2C卫星资料和NCEP再分析资料,对2009年6月19日东北地区一次短时强降水过程的天气尺度环流特征、中尺度对流系统(MCS)环境场及其触发机制进行了分析,概括了此次冷涡发展阶段暴雨过程的三维概念模型.结果表明,此次强降水系统主要发生在东北冷涡的发展阶段,造成强对流天气的系统尺度较小、突发性强,具有明显的β-γ中尺度对流系统的特点.高温高湿及位势不稳定层结、低层的湿舌北伸及中层干冷空气的侵入,为MCS的发生、发展提供了非常有利的环境条件.位于高空西风急流出口区北侧和偏东北大风中心入口区南侧的暴雨区上层有强的高空辐散,与辐合区南侧的低空急流前部相互耦合,使得暴雨区上升气流增强;高空急流出口区南侧的偏南风低空急流加强了风暴的人流强度,为风暴提供了有利的风场环境和水汽条件.暴雨区西南侧中低层存在干空气侵入,使中低层干冷空气迅速向对流风暴发生区输送,形成逆温层.在强对流爆发前,中低层的逆温层与上层的干层分开,使风暴发展所需的不稳定能量得以累积,冷涡系统东移引导低层偏西北气流南下,增强了地面流场的辐合,是触发初始对流的关键因素.  相似文献   

7.
李强  王秀明  张亚萍  何跃  张勇  黎中菊 《气象》2019,45(2):203-215
利用自动站观测资料、FY-2G卫星资料和多普勒雷达等资料,对发生在副热带高压影响下的重庆局地强风暴过程进行了观测和数值模拟分析,探讨了其中尺度对流系统(MCS)演变,抬升触发和维持机制。结果表明:(1)在副热带高压影响下,重庆处于高温、高湿气团中,大气层结极不稳定;(2)此次局地风暴抬升触发的关键因子是地面附近浅薄边界层中尺度辐合线,辐合线由川渝盆地中西部MCS的雷暴高压与重庆地面热低压共同作用形成;(3)中尺度辐合线触发的对流风暴形成小范围冷池出流与环境风场形成新的辐合线,加强对流风暴发展,并再次触发新的对流单体。承载层平均风为偏南风,使得对流单体向北缓慢移动,冷池出流和边界层辐合线共同作用使得风暴单体向西向北传播和长时间维持。  相似文献   

8.
2001年9月16日昆明机场发生了一次强对流天气过程,经二次滤波分析发现,这次过程主要是在大尺度辐合背景下由一个中尺度低涡扰动引起.物理量场诊断分析表明,触发对流的中尺度低涡是一个低层辐合强烈、向西北倾斜且较深厚的低值系统.而昆明地区持续高温及水汽积累为对流发生储备了能量和水汽条件,垂直风切变则使对流发展更为旺盛、维持时间更长.  相似文献   

9.
梅雨锋上两类中尺度对流系统形成的边界层特征   总被引:3,自引:0,他引:3  
采用具有较高时空分辨率的地面观测资料以及WRF(Weather reasearch and forecasting)模式输出资料,分析了2009年6月29一-30日梅雨锋暴雨过程中两类不同的中尺度对流系统(rnesoscale convective system,MCS)边界层特征及边界层对两类MCS的触发维持机理,重点分析了海平面气压场特征、边界层冷池、干线及其在MCS中的影响。结果表明:两类中尺度对流系统的海平面气压特征存在着明显的差异,对流爆发阶段地面风场存在辐合线,再次激发阶段气压场呈“跷跷板”型的中尺度扰动,即由前置中低压和后置中高压组成,最强的对流带位于中低压和中高压之间的过渡区内;边界层辐合线是第一类中尺度对流系统(MCSl)维持的重要因素;MCSl爆发后边界层冷池生成,冷池前的冷出流与低层环境风产生的强辐合触发了第二类中尺度对流系统(MCS2);存在于中低压和中高压之间的中尺度干线是MCS2的重要特点之一。  相似文献   

10.
梅雨锋暴雨中尺度对流系统触发和组织化的观测分析   总被引:5,自引:0,他引:5  
赵宇  裴昌春  杨成芳 《气象学报》2017,75(5):700-716
利用观测和NCEP再分析资料,对2015年6月26-28日江淮流域梅雨锋暴雨天气对流的触发和中尺度对流系统(MCS)的组织方式进行了分析。结果表明:梅雨锋附近发展的2个线状中尺度对流系统是暴雨的直接制造者。MCS2的发展有2种组织方式,26日夜间到27日凌晨,东西向雨带的不断后部建立和随后对流单体的列车效应是其发展的主要方式。27日凌晨到白天,初期新单体不断在线状MCS2的南缘触发,形成多个近乎平行的东北-西南向短雨带,后期梅雨锋锋面雨带从西部不断东移,经过强降水区;对流元有2种尺度的组织方式:新生对流单体沿着单个雨带向东北方向的列车效应以及东北-西南向雨带沿线状中尺度对流系统向东平移的"列车带"效应;持续的后部建立型和沿着同一路径不断的"列车带"效应使MCS2发展和维持。梅雨锋前不稳定空气的地形抬升和边界层辐合上升是初始对流的主要触发机制;26日夜间对流产生的冷池对对流的触发和MCS2的组织化及维持起重要作用,中尺度对流系统的组织特征和发生、发展受近地面环境场制约。   相似文献   

11.
一次强降水过程涡旋状MCS结构特征及成因初步分析   总被引:8,自引:8,他引:0  
吴涛  张家国  牛奔 《气象》2017,43(5):540-551
利用新一代天气雷达资料分析了造成2011年6月18日湖北省江汉平原强降水涡旋状中尺度对流系统(MCS)发生发展过程的结构特征,联合常规观测、地面加密观测及雷达四维变分风场反演资料初步研究了MCS可能成因。结果表明:(1)成熟阶段的强降水涡旋状MCS回波表现为气旋性弯曲的多条螺旋对流回波带、周围被大片层状云回波所包裹的结构特征,后期因冷空气侵入演变出冷暖锋式结构。回波合并和旋转式列车效应是产生强降水的主要运动特征。(2)涡旋状MCS是在有利环境场下,主要由鄂西山地一江汉平原过渡带边界层中尺度涡旋系统强烈发展组织的结果。(3)中尺度涡旋系统形成发展与地面暖倒槽发展、西南低涡前侧降水和特殊地形作用有密切关系,来自不同方向气流形成的强烈辐合是其前期形成发展的主要机制,后期发展可能与潜热释放有关,涡旋环流向上发展到700 hPa。  相似文献   

12.
2015年7月22日福建西部山区经历了一次罕见的极端降水过程,6 h降水量高达254.9 mm,24 h最大降水量达295.5 mm。利用常规天气资料、自动气象站、卫星云图、风廓线雷达以及多普勒天气雷达资料,分析此次过程的中尺度对流系统的环境条件及结构演变特征。分析表明:低空季风槽北抬减弱后的切变和高空高压之间的南北向槽缓慢向东北移动是此次强降雨的主要影响系统,不稳定能量加大、抬升凝结高度和自由对流高度低、大气可降水量大及中等到弱的垂直风切变形成有利于中尺度对流系统发展的环境条件。中尺度对流系统在发展过程中结构发生改变,由线状对流伴随层云(TL/AS)的结构转变为静止后向建立的中尺度对流系统,极端降水出现在静止后向传播阶段。高空冷空气入侵,低空西南急流加强并伴风速辐合,冷暖空气交汇导致中尺度对流系统加强发展,边界层西南气流在有利的喇叭口地形作用下加强抬升,北上受到山脉阻挡形成小涡旋,西北侧对流单体移入后不断加强,对流单体的移动方向和传播方向相反,中尺度对流系统形成静止后向传播,产生列车效应,出现极端降水。  相似文献   

13.
A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme rainfall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective cells are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature (θ e) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher-θ e air. The cold outflow is weak (wind speed ≤ 5 m s ?1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2–3°C and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-km length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.  相似文献   

14.
崔春光  王晓芳  付志康 《气象》2013,39(5):556-566
用多种加密观测资料和NCEP日再分析资料分析了2010年7月14日强降水期间咸宁地区一次非线状MCS活动造成短时强降水的发生发展机制.结果表明,14日13-18时非线状MCS回波结构组织性差,强对流单体散乱地分布在大片层状回波中,准静止地维持在湖北咸宁地区大约5h,造成了短时强降水.该MCS发生在梅雨锋锋面附近的地面涡旋环流中,高空冷空气侵入和锋前抬升运动是对流的主要触发机制,切变线南侧不稳定的暖湿气流在长江中游地区辐合集中、局地的地面气流辐合和边界层有利的风切变是该非线状MCS发展维持在成宁地区的有利条件.高时空分辨率探测资料对MCS演变过程有较好的分析能力.  相似文献   

15.
A numerical modelling study is presented focusing on the effects of mesoscale sea-surface temperature (SST) variability on surface fluxes and the marine atmospheric boundary-layer structure. A basic scenario is examined having two regions of SST anomaly with alternating warm/cold or cold/warm water regions. Conditions upstream from the anomaly region have SST values equal to the ambient atmosphere temperature, creating an upstream neutrally stratified boundary layer. Downstream from the anomaly region the SST is also set to the ambient atmosphere value. When the warm anomaly is upstream from the cold anomaly, the downstream boundary layer exhibits a more complex structure because of convective forcing and mixed layer deepening upstream from the cold anomaly. An internal boundary layer forms over the cold anomaly in this case, generating two distinct layers over the downstream region. When the cold anomaly is upstream from the warm anomaly, mixing over the warm anomaly quickly destroys the shallow cold layer, yielding a more uniform downstream boundary-layer vertical structure compared with the warm-to- cold case. Analysis of the momentum budget indicates that turbulent momentum flux divergence dominates the velocity field tendency, with pressure forcing accounting for only about 20% of the changes in momentum. Parameterization of surface fluxes and boundary-layer structure at these scales would be very difficult because of their dependence on subgrid-scale SST spatial order. Simulations of similar flow over smaller scale fronts (<5 km) suggest that small-scale SST variability might be parameterized in mesoscale models by relating the effective heat flux to the strength of the SST variance.  相似文献   

16.
2017年“5.7”广州特大暴雨的中尺度特征分析与成因初探   总被引:7,自引:5,他引:7  
2017年5月7日发生在广州北部的特大暴雨,局地性强,最大雨强达184.4 mm/h,3 h雨量突破了广东省历史极值,强降水持续时间长,具有明显的中尺度特征。特大暴雨有A区(花都)和B区(增城、黄埔)两个中心,它们在降水特点、地面中尺度特征及触发、对流的发展演变等方面各有特点。由于天气尺度强迫背景弱,数值模式无明显反映,给预报带来了很大的挑战。利用常规及加密自动站、多普勒雷达、风廓线、地基GPS等非常规观测资料,结合ERA-Interim 0.125 °×0.125 °逐6 h再分析资料重点分析和讨论了此次过程的中尺度特征、对流的触发与演变,以期为今后这类暴雨预报提供着眼点。结果表明:(1)此次过程突发性强,降水强度大,A区降水开始时间早,范围较B区小,但B区小时雨强更强,强降水持续时间更长;(2)次天气尺度边界层“7”字型的风压场形势下,脊后回流并加强的偏南风使暖层和湿层增厚,“下密上疏”的温度垂直结构,为强降水的发生提供了有利的环境条件。进入对流云中水汽质量无异常但产生了大量降水,极高的降水效率很可能是对流系统内部云水高效转化的结果,云的微物理过程在形成此次高强度的降水发挥着重要作用;(3)A区强降水发生前暖空气在山前堆积造成升温升压,东、西两支绕流广州城区的气流汇合并在工业区暖中心、山前暖空气堆积具有较高的对流边界层位置触发了对流;(4)B区强降水发生前持续降压并形成中尺度低压槽,A区中尺度对流系统前方入流造成的负变压,与地形强迫造成的风速辐合共同作用触发了B区对流。中尺度反气旋底部的偏北风与偏南、东南两支气流辐合稳定,使强降水长时间维持;(5)回波具有后向传播,垂直顶高低、质心低的热带对流回波特征,降水效率高。降水的拖曳下沉及蒸发冷却使边界层形成冷池,并与前侧暖湿空气相互作用,不断激发新的对流,冷池出流是持续抬升机制,是强降水持续时间长的重要原因。B区冷池厚度、暖湿气流爬升的高度与坡度比A区更大,冷池出流与暖湿气流辐合强度也比A区更强,造成B区雨强更强、持续时间更长,累积雨量更大。   相似文献   

17.
A heavy rainfall event caused by a mesoscale convective system (MCS), which occurred over the Yellow River midstream area during 7–9 July 2016, was analyzed using observational, high-resolution satellite, NCEP/NCAR reanalysis, and numerical simulation data. This heavy rainfall event was caused by one mesoscale convective complex (MCC) and five MCSs successively. The MCC rainstorm occurred when southwesterly winds strengthened into a jet. The MCS rainstorms occurred when low-level wind fields weakened, but their easterly components in the lower and boundary layers increased continuously. Numerical analysis revealed that there were obvious differences between the MCC and MCS rainstorms, including their three-dimensional airflow structure, disturbances in wind fields and vapor distributions, and characteristics of energy conversion and propagation. Formation of the MCC was related to southerly conveyed water vapor and energy to the north, with obvious water vapor exchange between the free atmosphere and the boundary layer. Continuous regeneration and development of the MCSs mainly relied on maintenance of an upward extension of a positive water vapor disturbance. The MCC rainstorm was triggered by large range of convergent ascending motion caused by a southerly jet, and easterly disturbance within the boundary layer. While a southerly fluctuation and easterly disturbance in the boundary layer were important triggers of the MCS rainstorms. Maintenance and development of the MCC and MCSs were linked to secondary circulation, resulting from convergence of Ekman non-equilibrium flow in the boundary layer. Both intensity and motion of the convergence centers in MCC and MCS cases were different. Clearly, sub-synoptic scale systems in the middle troposphere played a leading role in determining precipitation distribution during this event. Although mesoscale systems triggered by the sub-synoptic scale system induced the heavy rainfall, small-scale disturbances within the boundary layer determined its intensity and location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号