首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
利用船测近海层湍流热通量资料验证OAFlux数据集   总被引:1,自引:0,他引:1  
美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)的客观分析海气通量(Objectively Analyzed air-sea Fluxes,OAFlux)数据集中的近海层湍流热通量数据被公认为最可信,并被广泛地用于气候模式模拟结果检验。利用NOAA ETL(Environmental Technology Laboratory)两个固定观测站点的科学试验的船测通量数据库(TOGA COARE试验观测资料和KAWJEX试验观测资料),对OAFlux的热通量进行验证。结果表明:OAFlux的潜热通量普遍高于船测值,并且风速较大时,两者差异较大。风速对潜热通量的变化趋势起主导作用,海表和大气湿度差影响甚微。低风条件下,OAFlux的潜热通量和船测值差异则很小。海面湍流感热交换很弱,通量值本身依然受到风速的主导作用,但由于感热通量值与观测仪器误差十分接近,导致比较分析异常困难。分析结果表明:在上述两个观测试验期内,由于海表空气湿度和大气的湿度差变化不显著,海气相互作用的强度主要取决于海面风速的变化。  相似文献   

2.
印度洋潜热通量对南海夏季风爆发的影响   总被引:2,自引:0,他引:2  
利用OAFlux热通量资料和ERA-Interim高度场资料,分析了热带印度洋区域潜热通量的变化与南海夏季风爆发之间的关系,初步探讨了热带印度洋潜热通量变化对南海夏季风爆发早晚的影响过程。结果表明,2月热带印度洋区域的潜热通量与南海夏季风爆发之间存在密切的联系,当2月热带印度洋区域潜热通量较常年偏多(少)时,当年南海夏季风爆发偏晚(早)。当2月热带印度洋的潜热通量异常偏多(少)时,海洋向大气释放更多(少)的潜热,潜热通量通过对流凝结作用对大气加热形成大气热源,再通过大气环流逐渐影响2—4月的高度场,使得南海上空的850 hPa高度场出现异常偏高(低),即副热带高压偏强(弱)。异常强(弱)的副热带高压结合孟加拉湾弱(强)的异常西南风,造成南海夏季风爆发偏晚(早)。因此可以认为热带印度洋2月的潜热通量变化是影响南海夏季风爆发的重要因素。   相似文献   

3.
利用位于青藏高原东侧理塘大气综合观测站2008年观测资料,分析了高寒草甸下垫面上地表通量的时间变化特征,确定了温度、水汽和CO2的归一化标准差在不稳定情况下随稳定度变化的通量方差关系,应用通量方差法对感热、潜热和CO2通量进行了计算,并与涡旋相关系统的观测结果进行了比较。结果表明:地表通量月平均日变化呈较为规则的日循环特征,季节变化特征也很明显,雨季(5-9月)潜热大于感热,干季则以感热为主,CO2通量以6-9月值最大。在不稳定条件下,温度、水汽和CO2的归一化标准差随稳定度的变化均满足-1/3规律,其通量方差相似性常数分别为1.2,1.4和0.9。通量方差法估算出的通量值与涡旋相关观测得到的通量值有较好的一致性,但感热通量的效果优于潜热通量和CO2通量。该方法高估了感热通量尤其是潜热通量,而低估了CO2通量。采用直接观测的感热通量值计算潜热通量和CO2通量可改善计算结果。  相似文献   

4.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

5.
南海地区热通量的时空变化特征   总被引:3,自引:0,他引:3  
本文利用美国 NCEP1958-1998 年高斯网格月平均再分析资料,分析了南海及周边地区(0~20°N,100~125°E)热通量(包括潜热通量和感热通量)的时空变化,结果表明该潜热通量、感热通量具有明显的季节转换特征.南海中部海区是潜热通量、感热通量季节变化最剧烈的关键区,南海季风对潜热、感热输送均有影响,并且蒸发潜热输送大于感热输送.EOF 分析表明,风速对潜热、感热输送贡献较大,另外气温和相对湿度对潜热输送有贡献,而水温与气温差对感热输送有贡献.整个南海地区潜热通量、感热通量具有明显的年际变化特征,潜热通量存在5~8 a 以及 2 a 左右的周期振动,而感热通量只有 5~8 a 的周期振动.  相似文献   

6.
利用中国区域高分辨率数据集作为大气强迫场,驱动修改了热力学粗糙度参数化方案后的NoahMP陆面模式进行了2000-2018年青藏高原地区陆面过程模拟。用野外观测资料校验模拟结果后,分析了地表感热通量(SH)、潜热通量(LH)的分布及变化特征。结果表明,模式能较合理模拟高原地表感热和潜热通量。高原的中、西部为地表感热和潜热通量的年际变率较大区域。模拟的高原中、西部地区感热通量强于东部地区,且绝大部分区域的感热通量是有增强趋势的。对于整个高原,感热通量从2002年前后呈较明显的增强趋势。总体上,四个季节的平均感热都有较明显的增强,特别是在2010年以后。潜热通量在高原东部地区强于中、西部地区。潜热通量的年际变率相对于感热通量的变率要小。中部地区潜热呈减弱趋势,西部和东部都有弱的增强。对于整个高原,潜热通量在2000-2018年呈弱的增强趋势。其中,2000-2003年潜热通量是增强的,2003-2015年呈减弱趋势,主要因素为在夏季潜热通量的减弱。  相似文献   

7.
利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。  相似文献   

8.
王澄海  王蕾迪 《高原气象》2010,29(4):849-854
在对比分析2007年兰州大学SACOL测站观测值和NCEP模式产品的感、潜热等变化特征的基础上,用观测资料和NCEP感、潜热通量资料的误差对1961—2008年的NCEP感、潜热通量资料进行了订正。分析了近50年西北半干旱区感、潜热的年际变化趋势。结果表明:平均而言,在半干旱区,4月感热最大,7月潜热最大;在过去的近50年间,年平均潜热通量大于感热通量。近50年来,潜热通量有减小的趋势,感热通量有增加的趋势。  相似文献   

9.
利用1983—2002年NCEP/NCAR再分析的周平均海温(SST)场、逐日OLR、风场、海平面气压场、2 m高度空气比湿资料,及Woods Hole海洋研究所提供的OAFlux逐日潜热通量和ISCCP(国际卫星云气候计划)逐日短波辐射通量等资料,分析了南海地区季风爆发前后几周的南海多年平均SST随时间的演变和空间分布特征及其物理过程。结果表明:(1) 西南季风爆发前,南海全区SST显著升高,其中北部(17 ?N以北)升温幅度明显大于南部;从季风爆发到季风爆发后1周(季风爆发期),南海全区SST急剧降低;之后几周(季风爆发后),SST变化存在较明显的空间差异,南海北部转为升温趋势,而南部SST持续下降。(2) 季风爆发前,短波辐射增加,且南海北部增加幅度大于南部,导致南海SST上升且存在南北不均匀性。(3) 季风爆发期间,南海短波辐射急剧减少、潜热通量显著增加以及西南气流的突然增强共同导致SST的下降。(4) 季风爆发后,南海北部短波辐射增加而南部减少,对南北SST变化差异的产生有重要作用,同时近地层风场引起的海表动力过程也是影响SST变化的另一重要原因。(5) 季风爆发前后短波辐射的变化均和云量多少有关;季风爆发期间的潜热变化在南海南部主要是风速变化的结果,北部海气比湿差的贡献比较大。  相似文献   

10.
1998年南海季风试验期间海 气通量的估算   总被引:2,自引:0,他引:2       下载免费PDF全文
根据1998年南海季风试验西沙海面铁塔梯度观测资料,利用总体(Bulk)系数法和多层结通量廓线法对西沙海面的海-气通量进行了估算,得出两种方法估算的潜热通量、感热通量基本一致。总体系数法估算的潜热通量比多层结通量廓线法略大1~3 W·m-2,感热通量小0~1.5 W·m-2。一般而言,季风爆发期间潜热输送逐渐增加;季风爆发前期夜间潜热通量比季风爆发后期大;季风爆发后期,白天潜热通量明显大于爆发初期和中期。感热通量季风爆发前海面向大气输送,爆发后期大气向海面输送。动量通量和摩擦速度随风速增加。  相似文献   

11.
东海黑潮区潜热变化对中国春季降水的影响及其影响过程   总被引:2,自引:0,他引:2  
本文利用美国NCEP/NCAR再分析资料、哈德来(Hadley)中心海温数据、国家气候中心的观测站降水和客观分析海气通量(OAFlux)潜热感热通量资料,研究了1960~2010年春季黑潮区潜热输送对中国春季降水的影响及其影响过程。本文以黑潮流经的中国东部海域及邻近海域为研究对象,该区域是黑潮的主体区域,在文中简称为东海黑潮区。对中国东海以及邻近海域海温与降水的分析表明,在夏季该区域可能以大气强迫海洋为主,而在春冬两季可能主要为海洋强迫大气为主,秋季则可能为不明显的海气相互作用。在春季西北太平洋区域中感热和潜热都对黑潮流经的区域有比较好的敏感性,黑潮流经区域感热和潜热的气候平均值分别约为30 W m-2与120 W m-2;春季的感热通量标准差大值区主要集中在日本以西区域,潜热通量标准差主要集中在中国东海区域与日本东南区域(即东海黑潮区域)。春季潜热EOF第一模态的主要变化就集中在东海黑潮流域。相关分析与合成分析的结果表明,当黑潮潜热指数为正时,华南地区春季降水偏多,长江以北地区偏少,反之亦然。在物理过程分析中,黑潮潜热指数大于0.8时,长江以南的中国大陆有比较强盛的异常北风,使得水汽无法输送到更北的地区,导致在华南地区水汽的积累,并且在海面出现有利于降水的垂直运动异常延伸到大陆上,使华南地区降水增多,而长江以北的东部地区由于水汽输送偏弱,导致水汽积累偏少,从而降水减少。当黑潮指数小于-0.8时,有较强盛的异常南风,有利于水汽输送到北方地区,水汽在华北地区积累,导致长江以北出现降水正异常,而华南地区由于南风偏强,水汽输送加强,导致水汽无法在此区域积累,并且出现不利于降水的垂直运动异常,从而导致降水偏少。  相似文献   

12.
利用1958~2014年美国伍兹霍尔海洋研究所客观分析海气通量项目(OAFlux)的月平均潜热通量和相关气象要素数据,以及NCEP/NCAR再分析表面气压数据,通过Trend-EOF分析方法,本文研究了西太平洋—南海地区潜热通量的长期变化趋势。发现西太平洋—南海地区潜热通量整体呈上升的趋势,其中冬季上升趋势最强。冬季潜热通量趋势存在明显的南北差异,特别是在南海地区,南海北部为上升趋势而南部为下降趋势。南海北部以及菲律宾海地区冬季潜热通量上升的主要原因是海气比湿差的增大,而南海南部潜热通量呈下降趋势,在东侧主要原因是风速减小,在西侧主要原因是海气比湿差减小。南海潜热通量长期趋势的南北差异是风速和海气比湿差的共同作用造成的。另外,研究发现风速变化趋势受到局地环流变化的影响,在表面气压下降中心线以北地区为上升趋势,在其以南为下降趋势,而海气比湿差的变化趋势则主要取决于海表温度的变化趋势。  相似文献   

13.
A South China Sea (SCS) local TC (SLT) is defined as a tropical cyclone (TC) that forms within the SCS region and can reach the grade of tropical storm (TS) or above. The statistical features of the SLTs from 1985 to 2007 are analyzed first. It is found that over the SCS about 68% of the TCs can develop into TSs. The SLT intensity is relatively weak and associated with its genesis latitude as well as its track. The SLT monthly number presents a seasonal variation with two peaks in May and July to September. Based on the daily heat flux data from the Woods Hole Oceanographic Institution_Objectively Analyzed air-sea Fluxes (WHOI_OAFlux) in the same period, the air-sea exchange during the process of generation and development of the SLT is studied. Results show that the heat fluxes released to the atmosphere increase significantly day by day before cyclogenesis. The ocean to the south to the TC center provides the main energy. Along with the development of SLT, the regions with large heat fluxes spread clockwise to the north of TC, which reflects the energy dispersion property of vortex Rossby waves in the periphery of the TC. Once the SLT forms the heat fluxes are not intensified as much. During the whole process, the net heat, latent heat and sensible heat flux display a similar evolution, while the latent heat flux makes a main contribution to the net heat flux. The maximum air-sea heat exchange always occurs at the left side of the TC moving direction, which may reflect the influence of the SCS summer monsoon on TC structure.  相似文献   

14.
Using the standard eddy-covariance (EC) method to quantify mass and energy exchange at a single location usually results in an underestimation of vertical eddy fluxes at the surface. In order to better understand the reasons for this underestimation, an experimental set-up is presented that is based on spatial averaging of air temperature data from a network of ground-based sensors over agricultural land. For eight days during the 34-day observational period in May and June 2007, additional contributions to the sensible heat flux of more than 50Wm−2 were measured in the lower surface layer by applying the spatial EC method as opposed to the standard temporal EC method. Smaller but still significant additional sensible heat fluxes were detected for four more days. The additional energy is probably transported in organised convective structures resulting in a mean vertical wind velocity unequal to zero at the tower location. The results show that convective transport contributes significantly to the surface energy budget for measurement heights as low as 2–3 m. Since these structures may be quasi-stationary, they can hardly be captured by a single-location measurement. The spatial EC set-up presented here is capable of quantifying contributions to the sensible heat flux from structures up to the scale of our spatial sensor network, which covered an area 3.5 × 3.5 km. For future experiments aiming at closing the energy balance, the spatial EC method should be employed to measure both the sensible and latent heat fluxes. Experimental determination of the horizontal advection of sensible and latent heat should also be considered, since such transport must occur due to convergence and divergence related to convection.  相似文献   

15.
北太平洋海气界面湍流热通量的年际变化   总被引:4,自引:1,他引:3  
郑建秋  任保华  李根 《大气科学》2009,33(5):1111-1121
本文采用美国伍兹霍尔海洋研究所客观分析海气通量项目提供的1958~2006年月平均的湍流热通量及相关气象场数据, 利用EOF分析、小扰动方法、线性回归、相关分析等方法研究了北太平洋海气界面湍流热通量年际变化的时空特征、 影响因子及其与大气环流的关系。结果表明, 北太平洋湍流热通量的年际变化在冬季最为显著。我国东部海域及其向中东太平洋的延伸部分为冬季潜热通量和感热通量年际变化的关键区。冬季潜热通量的年际变化在副热带太平洋和菲律宾海域主要受风速变化影响, 在北太平洋的高纬和低纬海域尤其是赤道中太平洋主要受比湿差变化影响, 而冬季感热通量的年际变化在整个北太平洋都主要受海气温差变化影响。受大尺度环流影响, 异常低压中心的东 (西) 侧海气比湿差和海气温度差偏小 (偏大), 所以异常低压中心的东 (西) 侧潜热输送和感热输送偏弱 (偏强)。  相似文献   

16.
印度洋海气热通量交换研究   总被引:13,自引:0,他引:13  
周天军  张学洪 《大气科学》2002,26(2):161-170
基于综合海洋大气资料集(COADS)资料的研究表明,热带印度洋的海气热通量交换具有明显的区域性特征,在部分海域,如冬季热带印度洋的中东部、夏季的热带西印度洋和北印度洋,它主要表现为海洋对大气的强迫.海洋对大气的这种强迫,主要是通过潜热加热实现的.与潜热加热相比,感热加热尽管是一个小量,但感热异常与表层海温的显著相关,较之潜热明显超前.无论冬季还是夏季,热带印度洋都存在大面积海域,其SST变化难以通过海气热通量交换来解释.  相似文献   

17.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

18.
南疆沙漠腹地大气边界层湍流通量特征的观测研究   总被引:4,自引:0,他引:4  
利用新疆塔中站2006年4月、8月的三维风速。温度和水汽脉动资料,运用涡旋相关法计算得到了春、夏季塔中10m高度的动量、感热和潜热通量。结果表明,塔中地区地表热量输送以感热输送为主。春季每天的最大感热通量变化范围为120—320W·m^-2,月平均值为220W·m^-2;夏季最大感热通量的变化范围为140—340W·m^-2,月平均值为230W·m^-2。感热通量值在夜间为负,白天为正,符号的改变出现在日出、日落前后。夏季潜热通量最大值一般为20—60W·m^-2,平均值为27W·m^-2,潜热通量比感热通量小一个量级。春季动量通量的平均值为-0.063W·m^-2,夏季动量通量的平均值为-0.091W·m^-2。日变化规律比较明显,日出后,动量向下传输增大,在09-10时(地方时)出现一个最大值,随后动量向下传输并开始减小。  相似文献   

19.
Ocean models depend strongly on surface fluxes. When computed from atmospheric models, fluxes are affected by spin-up, i.e. they increase (or decrease) with forecast length. Such behavior may bias ocean models. The European Centre for Medium Range Forecasts (ECMWF) 40-year re-analysis (ERA-40) has been used to quantify short-range spin-ups of radiative and turbulent heat fluxes. Fluxes are compared as differences between two runs with the same initialization time. This method allows flux analysis over short-range forecasts as a function of distance from the initialization time. Results indicate that (i) latent heat flux spin-up increases with time but levels off after 24 h; (ii) sensible and radiative flux spin-ups remain constant after 6 h; (iii) regional spin-up of turbulent fluxes are systematic and can be larger than 30% for sensible heat but never exceeds 15% for latent heat; (iv) spin-up depends upon the season. The same analysis has been carried out with the ECMWF 15-year re-analysis (ERA-15); spin-ups in ERA-40 have been generally smaller than those in ERA-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号