首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
利用常规气象观测资料、中尺度自动站资料、探空站资料和空气污染资料,对2014年1月3-4日浙北地区的一次大范围灰霾天气过程进行了综合分析,结果表明:冷空气南下和中层高度的干燥暖舌影响,是这次灰霾天气过程的天气背景;冷空气受到700 h Pa干暖舌的抑制作用,侵入700 h Pa以上高度的速度缓慢,导致地面虽然有较大风速,但在中层形成的逆温结构,使得这次灰霾天气过程能够维持;发生霾时的混合层高度比轻雾高,大气混合层高度的变化对霾的发展变化有较好的指示作用,可为霾的预报提供参考依据。  相似文献   

2.
利用气象观测资料、南昌市PM2.5资料并结合HYSPLIT轨迹模型,对2013年12月4—10日江西省中北部地区一次典型、持续性灰霾天气过程进行了分析,综合讨论了灰霾天气发生过程中的天气形势、风速、能见度、低层相对湿度、层结稳定度等气象要素和物理量特征,分析了PM2.5浓度等环境要素的变化特征以及导致此次灰霾天气的污染源。结果表明:1)此次灰霾天气过程的500 h Pa高度层平均环流形势为"两槽一脊"型,江西省受西北偏西气流控制;弱冷空气、静稳天气是灰霾天气得以形成和发展的主要天气背景场。2)较小的近地面风速和较大的相对湿度以及中低层逆温层的存在均是此次灰霾形成和维持的重要条件,且此次灰霾天气过程中能见度分别与近地面风速和相对湿度、PM2.5浓度呈正、反相位关系,湿度升高、污染物浓度较高、风速较低的气象条件容易形成低能见度。3)灰霾天气气溶胶颗粒物浓度的升高可能是由本地污染源和甘肃省、内蒙古自治区一带以及四川省东南部污染源共同造成的;前期整体出现在2 km以下,随着时间的推移,浓度升高。  相似文献   

3.
针对2018年4月3-5日东北冷空气回流到京津冀地区造成复杂相态降水过程典型华北回流天气个例,利用ERA5再分析资料和MICAPS地面资料,详细分析了冷空气路径、形态、对降水范围及相态的影响等。分析表明:回流冷空气对京津冀地区的影响,可分为4个阶段,即低层冷舌侵入、沿山堆积扩散、增强维持、变性消散阶段。在低层冷舌侵入阶段,冷空气以冷舌形式经东北、渤海侵入京津冀地区,冷舌在不同高度位置不同;冷舌在垂直方向位于干、湿过渡区,降水粒子经冷舌下方干区蒸发,造成阴天无降水天气。在沿山堆积扩散阶段,低层冷空气遇太行山堆积并向南北以扇形形式扩散,较高层次冷空气西边界扩散至太行山山区;燕山南部、太行山东部存在深厚湿层,且温度较低,出现降雪;距离山脉较近的平原地区出现雨夹雪或雪;距离山脉较远的平原地区无降水。在增强维持阶段,冷空气强度达到最强,范围达到最大;深厚湿层从太行山、燕山向平原扩展,降水范围扩大,降水相态主要取决于近地面温度。在冷空气变性消散阶段,较高层次回暖先于较低层次,冷空气变性消失,降水趋于结束。  相似文献   

4.
利用常规地面观测资料及气象探空资料,分析了2016年11月3—5日关中地区霾天气过程,结果表明:高空500hPa锋区偏北,中纬度无明显冷空气活动,850hPa暖空气控制,地面弱气压场是导致关中地区霾出现的主要天气背景;近地层为正涡度平流,而925~850hPa为负涡度平流是大范围霾持续的动力结构;霾出现前有暖干空气向关中地区输送,而逆温层持续存在,是霾天气持续的重要原因;气压场稳定,风速偏小,大气混合层高度持续低于650m,致使大气水平和垂直交换能力弱,引发了此次霾天气。霾出现前后气象要素变化特征明显,可为霾的预报提供重要参考。  相似文献   

5.
根据NCEP/NCAR再分析资料、NOAA扩展重建海表温度资料,利用中国科学院大气物理研究所全球大气环流谱模式(IAP-T42L9)模拟了大气环流对黑潮区、北大西洋海温异常偏暖的响应特征,并探讨了黑潮区、北大西洋海温异常在2008年1月我国南方雪灾中的作用。通过模拟场与观测场的比较表明,在考虑黑潮区和北大西洋海温异常偏暖的情况下,模式比较成功地模拟出了2008年1月我国南方发生低温、雨雪、冰冻天气的各种主要环流特征。黑潮区海温升高导致东亚沿海位势高度增加,西太平洋副热带高压偏北。它一方面不利于冷空气向下游输送,导致冷空气在我国长江流域及其以南地区堆积;另一方面加强了海洋的暖湿气流及向我国长江流域及其以南地区的水汽输送,为我国南方雨雪天气形成提供了充沛的水汽条件,有利于我国南方低温、雨雪、冰冻天气的持续。北大西洋海温异常偏暖对中高纬地区中西伯利亚阻塞高压的形成有重要作用。受其影响,我国除受东路冷空气活动的影响外,中纬度还不断有西路冷空气随着西风带槽脊东移影响我国东部地区。它是导致我国南方低温、雨雪、冰冻天气持续的另一个重要原因。  相似文献   

6.
利用常规观测资料、FY-2G/2E卫星黑体亮温(TBB)资料、多普勒天气雷达资料与ERA-Interim再分析资料,对2016年4月17—18日南岭山脉一次强对流天气过程进行了诊断分析。结果表明:(1)该过程前期,受地面倒槽与辐合线影响出现暖区降水,后期随着地面冷空气侵入配合低空切变线与高空槽东移南压迅速转变为锋面降水,强降水落区与南岭山脉走向一致,大暴雨由多个中尺度对流系统(MCS)移入和有利地形作用造成;大冰雹、雷暴大风主要出现在暖区降水时段,暖区短时强降水以高质心降水为主,锋面越山之后强天气主要为低质心短时强降水,雷暴大风和冰雹较少出现。(2)雷达回波图上中层径向辐合的出现,对雷暴大风具有预警参考意义;中气旋、高垂直累积液态水含量(VIL)、回波悬垂、有界弱回波等回波特征对提前预警大冰雹有一定的指示作用。(3)不同类型强天气发生的大气层结条件存在差异,上层干区深厚、低层湿度条件较好有利于产生大冰雹,大的0—6 km垂直风切变有利于冰雹增长;大的下沉对流有效位能(DCAPE)是预报雷暴大风的一个参考指标;整层温度露点差和DCAPE小是判断只出现短时强降水的参考依据。(4)南岭及其附近地区"喇叭口"地形和迎风坡地形有利于低层气流辐合触发对流,造成暴雨多发和降水时间延长,南岭背风坡的锋生作用使南岭山脉南麓出现雷暴大风、冰雹等天气的可能性增大。  相似文献   

7.
利用常规气象观测资料、ECMWF再分析资料和多普勒天气雷达资料等,从环流特征、天气系统配置以及动力、热力条件等方面,对2017年10月8-9日甘肃中部地区的一次冷锋后高架雷暴天气过程进行综合诊断分析。结果表明:冷锋、700 hPa切变线、西南急流以及500 hPa高空槽是本次高架雷暴天气发生发展的主要天气系统。北方南下的冷空气在近地面形成冷垫,暖湿气流沿锋区倾斜爬升,在逆温层顶触发了高架雷暴天气。本次过程逆温层深厚,逆温层及其附近垂直方向上存在3个0℃层。受过程前降水和西南暖湿气流影响,大气层结呈"上干、下湿"结构,且具有"上下冷、中间暖"的特征。对流层中低层垂直风切变、低层辐合与高层辐散,是促使暖湿空气抬升的重要动力,而中低层高能舌和最大对流有效位能值能够较好地反映过程中的不稳定能量。高架雷暴过程中,兰州及附近地区出现降雨(雪)及冰雹天气,并伴有大范围东北-西南向雷电;雷达强回波高度达8 km以上,具有典型的冰雹回波特征。  相似文献   

8.
利用Micpas实况资料、FY-2C卫星云图以及多普勒雷达资料,对2014年3月29日夜间至31日凌晨发生的两次强对流天气过程进行了诊断分析,结果表明:(1)30日凌晨的强对流过程的触发机制是地面偏南和东南气流辐合及边界层辐合线,属于暖平流强迫;31日凌晨的强对流过程的触发机制是地面冷锋的动力抬升和边界层辐合线,属于冷平流强迫.(2)暖平流强迫产生的对流风暴一般强回波伸展高度较高,中层径向辐合更为深厚,多个单体合并增强以及回波的列车效应使降水增幅;冷平流强迫产生的飑线强回波高度相对较低,大范围的后侧入流叠加了冷平流的作用,使飑线移速加快,产生大范围雷暴大风天气.  相似文献   

9.
采用NCEP逐日0.5°×0.5°再分析资料对2008年1月发生在中国南方地区的暴雪过程进行诊断分析,通过对水汽分布、低空西南急流、切变线和垂直大气运动等气象要素分析表明:副热带高压异常偏北,低空西南急流活跃,为南方地区输送了充沛的水汽;中高纬度欧亚地区大气环流经向度偏大,冬季风偏强,导致冷空气势力较强;强冷空气与暖湿气流汇合,加上汇合带的强抬升作用,共同造成了此次南方地区的大范围降雪天气过程。  相似文献   

10.
2018年一次罕见早春飑线大风过程演变和机理分析   总被引:6,自引:4,他引:2       下载免费PDF全文
盛杰  郑永光  沈新勇  张涛  曹艳察  林隐静 《气象》2019,45(2):141-154
2018年3月4—5日,华南、江南等地发生了一次大范围强对流过程,发生时间早,落区范围广,多地伴有雷暴大风、冰雹、短时强降水等剧烈对流天气,尤其飑线在江西境内造成了严重大风灾害。基于大气环流和雷达回波发展演变特征,将该次过程分为初始、发展和减弱三个阶段:初始阶段西风槽前西南急流造成的低压倒槽为强对流提供大尺度触发条件;发展阶段对流活动位于槽前暖区中,飑线在江西造成极端大风;入夜后,冷锋南下,对流进入减弱阶段。环境场及对流参数诊断表明江西中北部低层高温高湿,中层干冷,温度垂直递减率大,有利于产生雷暴大风。南昌探空长时间序列分析表明温湿要素气候态异常,与历史同期比,低层明显偏暖偏湿,中层偏干,有利于极端对流天气发生。综合多源观测资料和雷达资料分析中小尺度特征,本次江西飑线过程特点及成因包括:(1)受引导气流和前向传播共同作用,飑线移动速度快。(2)自动站分析显示飑锋后雷暴高压强,与锋前暖低压作用造成强密度流,有利于产生大范围直线型大风;(3)通过对比飑线弓状回波南北段回波结构差异表明,飑线后侧中层干后向入流促使降水粒子相变,剧烈降温形成的强下沉运动(下击暴流)是导致极端大风的主要原因,后部层云区下沉气流增强雷暴高压加之动量下传作用对雷暴大风有增幅作用。  相似文献   

11.
利用常规气象观测资料和NCEP 1°×1°再分析资料,对2013年底浙西地区一次持续性灰霾天气过程进行了分析。结果表明,该过程期间存在比较稳定的高、低空和地面环流形势,中低层湿度条件较差;低层以弱辐散和弱垂直运动为主,并且1000 hPa高度层以下浅薄逆温层的持续存在均有利于灰霾天气的维持;干冷空气前锋和主体影响期间,冷平流强度加大且低层有辐合中心和垂直上升运动中心出现,扩散条件好转是灰霾程度减弱的主要原因之一;浙西地区为盆地地形,南北高、中间低的地势不利于污染物的扩散。  相似文献   

12.
使用NCEP FNL资料对2013年12月浙北北部两次重度霾过程进行分析,结果发现,两次过程均与冷空气影响有关,发生前存在大范围污染物的持续积累,都是本地排放积累和周边污染传输的综合影响结果。两次过程发生的气象背景不同: 4日过程因静稳天气影响所致,污染物主要来自本地和周边(江苏中东部)的传输积累;26日过程与冷空气影响关系密切,为冷空气前锋携带大量污染物快速南下影响所致,污染物主要来源于黄淮平原远距离输入。边界层逆温有利于增强并导致重度霾发生。风廓线资料显示,边界层偏北风影响至地面时,重度霾发生。1500 m高度以下风力持续低于4级,重度霾和雾发展并持续;边界层风力增大至6级,重度霾消散。静稳天气下,污染物浓度变化与本地活动关系密切,过程中PM颗粒物共出现3个浓度高峰,而冷空气影响下,仅出现单个浓度高峰。  相似文献   

13.
珠江三角洲霾天气的近地层输送条件研究   总被引:68,自引:4,他引:64       下载免费PDF全文
近年来, 珠江三角洲地区气溶胶污染日趋严重, 霾天气造成能见度恶化和空气质量下降。近地层输送条件即地面流场与大气污染物稀释扩散密切相关。利用2004—2005年广东省466个地面自动气象站资料、广州观象台常规气象资料、珠江三角洲大气成分站网器测能见度资料、珠江三角洲城市环境监测站网的PM10浓度资料等, 使用矢量和分析方法, 分析珠江三角洲近地层风及其对严重霾天气过程和清洁对照过程的影响。结果表明: 2004年霾天气高发季节, 东亚纬向环流比2005年同期显著, 纬向环流不显著的年份, 气流南北交换显著, 冷空气跨越南岭、到达珠江三角洲的机会比较大, 伴随冷空气的大风等天气有利于污染物扩散; 纬向环流显著的年份, 冷空气跨越南岭、到达珠江三角洲的机会比较小, 污染物易于堆积。珠江三角洲霾天气具有区域性特征, 旱季出现最多, 雨季出现最少。严重霾天气过程出现在每年12月至次年4月, 清洁对照过程出现在台风直接影响或冷空气活动频繁的季节。与2004年相比, 2005年的静风频率较低, 且旱季风速较大, 不利于霾天气的形成。矢量和分析表明:区域霾天气过程与区域内静小风过程, 即出现气流停滞区有密切联系, 清洁对照过程与强平流输送有关。  相似文献   

14.
利用中国国家地面站逐小时气象观测资料、中国环境监测总站空气质量逐时监测数据、ECMWF 0.125°(纬度)×0.125°(经度)再分析资料及青岛市八关山自动站常规要素逐小时数据,对2018年1月15~22日青岛市一次重度污染雾—霾天气过程的特征及其影响因子进行分析。结果表明:PM10为首要污染物,污染过程中青岛市48 h 输入污染源前期主要为北方干冷气团与江淮湿空气在山东半岛北部汇聚堆积,后期则主要包括山东省内局地大气污染物排放。雾—霾期间,500 hPa中高纬地区受乌拉尔山阻塞高压和中西伯利亚冷低压控制,宽广的东亚横槽稳定维持,青岛上空以平直西风气流为主,地面等压线稀疏,风速小;随着横槽转竖,纬向型环流转为经向型,冷空气大举南下,风速急增,降雪发生,雾—霾迅速消散。在静稳的大气环流背景下,当近地逆温层内弱风或持续吹陆风,对流层低层上升和下沉运动较弱,水汽条件较好时,有利于雾—霾维持。综合分析雾—霾各阶段PM2.5浓度和相对湿度与能见度间的关系发现,霾阶段两因子影响力相当;雾阶段能见度主要受相对湿度的影响;静稳条件下PM2.5浓度累积增加是影响雾、霾混合阶段能见度的主要因子。  相似文献   

15.
“13·12”西安重污染气象条件及影响因素   总被引:6,自引:4,他引:2       下载免费PDF全文
使用高分辨监测资料对2013年12月18—25日西安严重污染天气气象条件及影响因素进行分析。结果表明:严重污染期间,亚洲大陆中高纬度500 hPa呈一槽一脊经向环流型,陕西处于地面冷高压南部均压场控制下。空气质量转好时,高空锋区明显增强,地面冷锋快速东移、南压,边界层高度增大,近地层集聚污染物显著抬升。严重污染与非污染时段气象条件差异明显。除接地逆温外,近地层不同高度存在悬浮逆温,相对湿度呈湿-干-湿垂直分布,温湿条件有利于污染加强。严重污染属于以湿霾为主的重度霾天气,日平均能见度小于1.5 km,边界层高度小于0.7 km,郊区湿霾每日持续时间平均比市区长约5 h。严重污染期间,细颗粒物浓度远高于粗颗粒物,随时间增加趋势明显。颗粒物平均浓度在午后出现峰值,可能与边界层高度偏低、关中盆地地形因素密切相关,本地地面风场日变化对污染有加重效应。  相似文献   

16.
以华北地区为研究区域,利用地面监测数据、高空观测资料、NCEP FNL资料及HYSPLIT后向轨迹模式,对2016年12月26日至2017年1月9日该地区的雾霾天气过程进行综合分析。结果表明,雾霾期间高空以纬向环流为主,冷空气势力偏弱,主要受高压、弱高压或均压场控制,有利于华北地区静稳天气形成。同时,雾霾期间边界层平均高度约600~900 m,污染物浓度与边界层高度呈负相关,且污染物浓度变化较边界层高度变化存在滞后现象。逆温层的长期存在,不利于污染物垂直扩散,能见度一直维持在5 km以下。后向轨迹集合模拟与聚类分析表明,以北京地区为核心的华北地区雾霾天气期间,外来污染物中,80%来自西北方气团,20%来自河北西南地区气团。  相似文献   

17.
利用NCEP再分析资料、L波段雷达探空资料、常规气象资料及自动气象站资料和空气污染资料,对2005年12月25-28日重庆主城区一次重度霾天气过程进行了分析.结果表明:此次重度霾天气过程发生在一定天气背景下,500 hPa青藏高原南侧南支槽槽区宽广,槽前西南气流较为强盛,850 hPa重庆地区持续处于均压场控制,气压梯度小,水平风速弱,且影响重庆地区的冷空气活动少、强度弱,有利于重度霾的形成和维持;低层风速较小、中低层逆温层的持续存在、气温较低也是此次重度霾形成和维持的重要条件;在未达到饱和的情况下,适当增加湿度有利于霾的加强,霾天气过程中,气溶胶粒子的吸湿增长会使能见度更加恶化.  相似文献   

18.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

19.
本文利用常规气象资料、NCEP (1°×1°)再分析资料和环监站实时监测数据,分析了2017年12月四川盆地南部一次持续性雾霾的气象特征和增强机制。结果表明:(1)中高纬平直纬向环流、低层弱偏南偏东气流、地面均压场组成的静稳天气长时间维持为雾霾天气的形成和维持提供了有利的环流背景条件。(2)上干下湿、逆温明显的大气稳定层结,连续无降水、近地层高湿和较弱的风场提供有利的气象要素条件。(3)低层弱冷平流、上层暖平流促进稳定层结长时间维持和近地层水汽凝结作用加强,为雾霾天气的增强和持续起到了重要作用。(4)冷空气、降水,水平和垂直扩散能力增强是空气污染物浓度降低的重要条件。   相似文献   

20.
2018年11月23日至12月3日,华北平原出现了一次较长时间的雾霾天气。利用常规气象观测资料、NCEP/NCAR再分析资料和污染物浓度资料,以河南省濮阳市为例,对此过程的大尺度环流背景场、边界层内气象要素特征、动力因素和污染状况等进行综合分析,分3个阶段探讨此过程形成的原因和维持机制。结果表明:(1)雾霾发生在高空纬向环流背景下,华北处于高压脊前西北气流中,频繁受下滑短波槽影响。(2)冷空气活动偏弱,中低层维持暖脊控制,使边界层内出现较强逆温,制约低层水汽和污染物的垂直扩散。(3)地面处于均压场或锋后弱冷高压控制,弱风条件不利于污染物的水平扩散。(4)前期大雾形成时,强逆温层在900 hPa以下的贴地高度,能见度很低,污染严重;中期霾严重时,较强逆温层上移至900—850 hPa,并出现双层逆温,能见度虽较好,污染仍然严重;后期的雾霾主要由高湿度环境中污染物聚集吸湿增长造成。(5)中低空弱的下沉气流及近地面辐合风场是雾霾天气得以发展维持的动力因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号