首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a hydrodynamic model is developed to simulate the six degrees of freedom motions of the underwater remotely operated vehicle (ROV) including the umbilical cable effect. The corresponding hydrodynamic forces on the underwater vehicle are obtained by the planar motion mechanism test technique. With the relevant hydrodynamic coefficients, the 4th-order Runge–Kutta numerical method is then adopted to solve the equations of motions of the ROV and the configuration of the umbilical cable. The multi-step shooting method is also suggested to solve the two-end boundary-value problem on the umbilical cable with respect to a set of first-order ordinary differential equation system. All operation simulations for the ROV including forward moving, ascending, descending, sideward moving and turning motions can be analyzed, either with or without umbilical cable effect. The current effect is also taken into consideration. The present results reveal that the umbilical cable indeed significantly affects the motion of the ROV and should not be neglected in the simulation.  相似文献   

2.
The main objective of this work is to investigate the effects of the damping level as well as different excitation forms on the overall prediction of the hydrodynamic parameters in the equations describing the coupled heave and pitch motions for an Underwater Robotic Vehicle (URV) sailing near the sea surface in random waves. The response of an underwater vehicle heaving and pitching in random waves having wide-band and narrow-band spectra are generated. The RDLRNNT technique is used to identify the hydrodynamic parameters in the equations. The technique is based on a combination of a multiple linear regression algorithm and a neural networks technique. The combination of the classical parametric identification techniques and the neural networks technique provides robust results and does not require a large amount of computer time. The identification technique would be particularly useful in identifying the parameters for both moderately and lightly damped motions under the action of unknown excitations effected by a realistic sea. It is shown that the developed technique produces reliable results for the parameters in the equations describing the coupled heave and pitch motions for a URV.  相似文献   

3.
An experimental set-up is developed and proved to be effective for laboratory study of an underwater towed system. The experimental technique gives a practical method for monitoring the kinematic and dynamic performance of an underwater towed system in a ship towing tank. Both the theoretical and experimental results in the investigation indicate that the hydrodynamic response of a towed vehicle to the wave induced motion of a towing ship can be significantly reduced by applying a two-part tow method. A comparison of the numerical and experimental results in the investigation demonstrates that the numerical simulation results are close to the experimental data, overall agreement between experimental and theoretical results is satisfactory. The results qualitatively verify the mathematical model of a two-part underwater towed system proposed by Wu and Chwang [Wu, J., Chwang, A.T., 2000. A hydrodynamic model of a two-part underwater towed system. Ocean Engineering 27 (5), 455–472].  相似文献   

4.
An underwater vehicle typically has various appendages such as sail, rudders and hydroplanes. These appendages affect the hull hydrodynamic characteristics, including the resistance components and the form of the generated wave due to the motion of the vehicle near the free surface. The effect of the appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface is studied. Initially the DARPPA SUBOFF submarine without the appendages is selected and hydrodynamic characteristics, including the friction resistance, viscous pressure resistance, wave resistance and shape of the created wave on the free surface are calculated for Froude numbers in the range of 0.128–0.84 and non-dimensional submergence depths 1.3, 2.2, 3.3 & 4.4. Then, by adding the appendages and comparing these two conditions, the effect of appendages is obtained. The results of computations indicate that the appendages cause a mean increase of about 16% in the total resistance. This increment is due to viscosity of fluid and also the interaction of the main hull with the appendages. There are no significant changes in the wave pattern and wave making resistance due to the presence of appendages.  相似文献   

5.
A hydrodynamic model of a two-part underwater manoeuvrable towed system is proposed in which a depressor is equipped with active horizontal and vertical control surfaces, and a towed vehicle is attached to the lower end of a primary cable. In such a system the towed vehicle can be manoeuvred in both vertical and horizontal planes when it is towed at a certain velocity and the coupling effect of excitations at the upper end of the primary cable and disturbances of control manipulations to the towed vehicle can be reduced. In the model the hydrodynamic behavior of an underwater vehicle is described by the six-degrees-of-freedom equations of motion for submarine simulations. The added masses of an underwater vehicle are obtained from the three-dimensional potential theory. The control surface forces of the vehicle are determined by the wing theory. The results indicate that with relative simple control measures a two-part underwater manoeuvrable towed system enables the towed vehicle to travel in a wide range with a stable attitude. The method in this model gives an effective numerical approach for determining hydrodynamic characteristics of an underwater vehicle especially when little or no experimental data are available or when costs prohibit doing experiments for determining these data.  相似文献   

6.
杨新平  徐鹏飞  胡震 《海洋工程》2012,30(1):137-144
以载人深潜器的各种水动力参数和实际尺寸为基础,根据几何空间坐标方程建立了其运动学模型,采用MultiGen公司的Creator建模工具和Vega视景环境完成了在深海虚拟环境下的系统仿真。该系统可以实现深海机器人的可视化,更加直观、生动和实时的反映其位姿状态和水面、水下巡航过程。该系统实际应用在中国科学技术馆深海机器人展馆项目上,一方面展示载人深潜器的水下工作过程,同时也使得观众有机会亲身体验潜水器的操纵与驾驶。实际运行结果表明,该系统逼真地演示了载人深潜器水面备航、无动力下潜以及近海底巡航等仿真过程,能够满足系统仿真的实时性要求。该系统还可以应用到深海环境模拟研究、水下机器人运动仿真、控制系统调试以及操纵驾驶训练等中。  相似文献   

7.
This paper presents a procedure to calculate the design pressure distributions on the hull of a wave energy converter (WEC). Design pressures are the maximum pressure values that the device is expected to experience during its operational life time. The procedure is applied to the prototype under development by Martifer Energy (FLOW—Future Life in Ocean Waves).A boundary integral method is used to solve the hydrodynamic problem. The hydrodynamic pressures are combined with the hydrostatic ones and the internal pressures of the large ballast tanks. The first step consists of validating the numerical results of motions by comparison with measured experimental data obtained with a scaled model of the WEC. The numerical model is tuned by adjusting the damping of the device rotational motions and the equivalent damping and stiffness of the power take-off system. The pressure distributions are calculated for all irregular sea states representative of the Portuguese Pilot Zone where the prototype will be installed and a long term distribution method is used to calculate the expected maximum pressures on the hull corresponding to the 100-year return period.  相似文献   

8.
In this paper, the hydrodynamic characteristic of a synthetic jet steered underwater vehicle is studied. The steering motion studied is the lateral motion and the yaw motion. The lateral motion is induced through the in-phase work of this two actuators and the yaw motion is realized through the out-of-phase work. The vehicle studied is REMUS AUV with synthetic jet actuator mounted inside. The hydrodynamic characteristic of the vehicle under different cruising speed is studied. The driving parameters of the SJ actuator keep invariant in different cases. When the two actuators work in phase, the average steering force is smaller than the thrust of the isolated actuator and keeps nearly invariant under different cruising speed. When the two actuators work out of phase, the average steering moment also keeps invariant with cruising speed. The mathematical model of the additional drag of the vehicle, the thrust of the actuator, the steering force as well as the steering moment is given. The velocity distribution is also given to assistant the analysis in this paper. From the analysis given it can be known the steering method based on SJ is realized through position control other than velocity control.  相似文献   

9.
This paper analyzes the hydrodynamic performance of a planing craft with a fixed hydrofoil in regular waves. Numerical simulations are carried out based on a RANS-VOF solver to study the hydrodynamic performance of the planing craft and the influence of the fixed hydrofoil on its seakeeping. To validate the numerical method, a series of hydrodynamic experiments of a bare planing craft without the hydrofoil were carried out, from which the seakeeping performance of the planing craft was recorded, the numerical method based on overset grid was compared with the experiment and verified reliable. Eight hydrofoil design cases were then studied, whereby, their seakeeping performance in regular wave conditions were predicted through the numerical method which has been verified reliable and compared with each other. Effects of hydrofoil parameters, such as angle of attack and installation height, on the seakeeping performance were investigated. Finally, the suitable installation parameters which can optimize the performance of hydrofoil and reduce the negative influence are verified. The influence of the speed on the effect of the hydrofoil and the flow field around the planing craft are also investigated.  相似文献   

10.
A coupled numerical model considering nonlinear sloshing flows and the linear ship motions has been developed based on a boundary element method. Hydrodynamic performances of a tank containing internal fluid under regular wave excitations in sway are investigated by the present time-domain simulation model and comparative model tests. The numerical model features well the hydrodynamic performance of a tank and its internal sloshing flows obtained from the experiments. In particular, the numerical simulations of the strong nonlinear sloshing flows at the natural frequency have been validated. The influence of the excitation wave height and wave frequency on ship motions and internal sloshing has been investigated. The magnitude of the internal sloshing increases nonlinearly as the wave excitation increases. It is observed that the asymmetry of the internal sloshing relative to still water surface becomes more pronounced at higher wave excitation. The internal sloshing-induced wave elevation is found to be amplitude-modulated. The frequency of the amplitude modulation envelope is determined by the difference between the incident wave frequency and the natural frequency of the internal sloshing. Furthermore, the coupling mechanism between ship motions and internal sloshing is discussed.  相似文献   

11.
Traditionally autonomous underwater vehicles (AUVs) have been built with a torpedo-like shape. This common shaping is hydrodynamically suboptimal for those AUVs required to operate at snorkeling condition near the free surface. In this case, the wave resistance associated to the wavy deformation of the sea surface induced by the motion of the platform is an important component of the drag. This work has investigated the optimum hull shape of an underwater vehicle moving near the free surface. Specifically a first-order Rankine panel method has been implemented to compute the wave resistance on a body of revolution moving close to the free surface. A simulated annealing algorithm was then employed to search those set of parameters defining the hull shape that minimize the wave resistance. The optimization was constrained to keep constant the total volume of the vehicle. The total drag of scaled models of the torpedo-like and resulting optimum shapes was measured in the naval tank of the University of Trieste. Measurements showed a smaller resistance of the optimized shape in the range of the considered Froude numbers.  相似文献   

12.
The seakeeping characteristics of a Small Waterplane Area Twin Hull (SWATH) vehicle equipped with fixed stabilizing fins was investigated by experimental and numerical methods The calculation methods range from viscous CFD simulation based on an unsteady RANS approach to Boundary Element Method (BEM) based on Three Dimensional Translating-pulsating Source Green Function (3DTP). Responses of ship motions in head regular waves and nonlinear effects on motion responses with increasing wave amplitude were analyzed. Numerical simulations have been validated by comparisons with experimental tests. The results indicate that the heave and pitch transfer functions depict two peaks with the increase of wave length. Comparisons amongst experimental data and different numerical calculations illustrate that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. The heave and pitch transfer functions see a downward trend with the increasing wave amplitude in the resonant zone at low speed.  相似文献   

13.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

14.
基于自研的HUST-Ship黏性流CFD求解器,提出了一种船舶耐波性数值试验水池参数化建模方法和网格生成技术。在自研的CFD软件平台中,根据波浪参数(规则波的波长、波高和不规则波的特征周期、有效波高)自动生成船舶耐波性数值试验水池。以结构化重叠网格技术为基础,分别对船舶与水池进行网格划分并进行网格的组装、重叠,实现船舶在耐波性数值试验水池中的数值“试验”,对船舶耐波性进行数值预报。根据波浪种类分为规则波数值试验水池与不规则波数值试验水池,可对各类波浪条件实现精确可靠的数值造波,模拟船舶在各种波浪环境中运动响应、耐波性事件与非线性运动特性。采用参数化建模方法生成的耐波性数值试验水池能够提高建模和网格生成效率,通过对国际标模进行数值预报并与船模试验结果对比,验证了参数化建模方法生成的耐波性数值试验水池对船舶在波浪中运动性能的计算精度。  相似文献   

15.
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.  相似文献   

16.
In this paper,the underwater vehicle,sling and the mother ship are considered as a single de-gree of freedom system connected by a spring.Through the analysis of this system,a physical model is es-tablished,which describes the motion of the vehicle caused by the ship motion and wave motion.Furthermore,a mathematical model based on this physical model is obtained,and a numerical solutionprogram is made.As an example,a practical launch and recovery system for an underwater robot is calcu-lated by use of the program.and the motion track of the robot is obtained.  相似文献   

17.
海况对水下运载器吊放回收的影响   总被引:1,自引:1,他引:1  
本文将水下运载器,吊索和母船看作是一个由弹簧连接的单自由度系统,通过对系统进行分析和研究,建立了水下被吊物体在吊索带动下,由吊臂端点运动引起的运动响应的物理模型、数学方程,并编制了各项参数可调的计算机程序以求解水下物体的运动轨迹。运用此程序,对影响参数作系列变化后进行了运动响应计算,并绘制成运动响应随这些参数变化的曲线,为水下吊放回收系统的设计提供了依据  相似文献   

18.
The overall performance of ships depends on the seakeeping performance in specified sea areas where the vessel is designed to operate. The seakeeping performance procedure is based upon the probability of exceeding specified ship motions in a sea environment particular to the vessel's mission. Given the operational area of the vessel, the percentage of time the vessel operates in a particular sea state can be determined from an oceanographic database through application of the response amplitude operators. The predicted motions are compared to the motion limiting criteria to obtain the operability indices. However, the operability indices are strongly affected by the chosen limiting criteria. This is particularly the case for passenger vessels where many conflicting criteria are used to assess the effect of motions and accelerations on comfort and well-being of passengers. This paper investigates the effect of seakeeping criteria on seakeeping performance assessment for passenger vessels. Conventional seakeeping performance measures are evaluated for various levels of vertical accelerations defined by the ISO 2631 standard. It is shown that the estimated seakeeping performance of a passenger vessel greatly depends on the level of limiting value selected as the seakeeping criteria.  相似文献   

19.
When a fast container ship or a naval vessel turns, accompanying roll motions occur. This roll effect must be considered in the horizontal equations of the motion of the ship to predict the maneuverability of the ship properly. In this paper, a new method for determining a model structure of the hydrodynamic roll moment acting on a ship and for estimating the hydrodynamic coefficients is proposed. The method utilizes a system identification technique with the data from sea trial tests or from free running model (FRM) tests. To obtain motion data that is applied to the proposed algorithm, an FRM of a large container ship was developed. Using this model ship, standard maneuvering tests were carried out on a small body of water out of doors. A hydrodynamic roll moment model was constructed utilizing the data from turning circle tests and a 20-20 zig-zag test. This was then confirmed through a 10-10 zig-zag test. It was concluded that a model structure of the hydrodynamic roll moment model could be established without difficulty through a system identification method and FRM tests.  相似文献   

20.
Parametric rolling is one of five types of the ship stability failure modes as proposed by IMO. The periodic change of the metacentric height is often considered as the internal cause of this phenomenon. Parametric rolling is a complex nonlinear hydrodynamic problem, often accompanied by large amplitude vertical motions of ships. In recent years,the Reynolds-averaged Navier–Stokes(RANS) equation simulations for viscous flows have made great progress in the field of ship seakeeping. In this paper, the parametric rolling for the C11 containership in regular waves is studied both experimentally and numerically. In the experiments, parametric rolling amplitudes at different drafts, forward speeds and wave steepnesses are analyzed. The differences in the steady amplitudes of parametric rolling are observed for two drafts. The effect of the incident wave steepness(or wave amplitude) is also studied, and this supports previous results obtained on limits of the stability for parametric rolling. In numerical simulations, the ship motions of parametric rolling are analyzed by use of the potential-flow and viscous-flow methods. In the viscousflow method, the Reynolds-averaged Navier–Stokes equations are solved using the overset grid method. The numerical accuracies of the two methods at different wave steepnesses are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号