首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the capability of numerical models to transport anomalously dense bottom waters from the areas of their generation on the shelf to deepwater areas is considered. These numerical models have a number of mechanisms that are favorable for this transport, but unrelated directly with the real physics of that motion. A more accurate account of the resupply of oceanic deep waters requires either a very fine resolution for the numerical model or an efficient parametrization. Two such parametrizations are proposed in this study. The first is based on amplified lateral diffusion exchange if slope instability exists. The second is related to an additional procedure allowing dense waters to leak under waters of lesser density along a shelf slope with their displacement to higher layers. The first parametrization is shown to be less efficient because it leads to a significant interaction between anomaly waters and ambient waters and to a quick loss of their original features. The second procedure is more preferable because it leads to a significant resupply of dense deep waters at the expense of dense waters generated at a distance significantly far from the shelf break. With the help of the given parametrization, during a numerical experiment these waters can be transported considerable distances away from their place of generation to the shelf boundary and deepwater areas of the ocean with a slight change in their original density characteristics.  相似文献   

2.
全球碳增汇需求高涨,海冰消退后的北冰洋被期待是一个主要的潜在碳增汇区。北冰洋太平洋扇区因受控于楚科奇海及其邻近海域较高的海洋固碳效率和碳深海封存量,在整个北冰洋碳循环中起着举足轻重的作用。开展该海域碳循环过程对环境快速变化的响应机制研究是实现北冰洋碳汇精准预测的基础。本文重点阐述了楚科奇海及其邻近海域碳循环过程(即海洋对大气二氧化碳的吸收、生物固碳、太平洋入流携带碳经陆架生物地化过程后向深海输出封存的陆架泵)对北冰洋环境快速变化的响应,并提出未来研究需要聚焦的关键科学问题。  相似文献   

3.
Circulation on the north central Chukchi Sea shelf   总被引:8,自引:0,他引:8  
Mooring and shipboard data collected between 1992 and 1995 delineate the circulation over the north central Chukchi shelf. Previous studies indicated that Pacific waters crossed the Chukchi shelf through Herald Valley (in the west) and Barrow Canyon (in the east). We find a third branch (through the Central Channel) onto the outer shelf. The Central Channel transport varies seasonally in phase with Bering Strait transport, and is 0.2 Sv on average, although some of this might include water entrained from the outflow through Herald Valley. A portion of the Central Channel outflow moves eastward and converges with the Alaskan Coastal Current at the head of Barrow Canyon. The remainder appears to continue northeastward over the central outer shelf toward the shelfbreak, joined by outflow from Herald Valley. The mean flow opposes the prevailing winds and is primarily forced by the sea-level slope between the Pacific and Arctic oceans. Current variations are mainly wind forced, but baroclinic forcing, associated with upstream dense-water formation in coastal polynyas might occasionally be important.Winter water-mass modification depends crucially on the fall and winter winds, which control seasonal ice development. An extensive fall ice cover delays cooling, limits new ice formation, and results in little salinization. In such years, Bering shelf waters cross the Chukchi shelf with little modification. In contrast, extensive open water in fall leads to early and rapid cooling, and if accompanied by vigorous ice production within coastal polynyas, results in the production of high-salinity (>33) shelf waters. Such interannual variability likely affects slope processes and the transport of Pacific waters into the Arctic Ocean interior.  相似文献   

4.
Second-order moment advection scheme applied to Arctic Ocean simulation   总被引:2,自引:0,他引:2  
We apply the second-order moment (SOM) advection scheme of (Prather, M.J. 1986. Numerical advection by conservation of second-order moments. J. Geophys. Res. 91, 6671–6681.) to the simulation of the large-scale circulation of the Arctic Ocean with a coupled ocean–sea-ice model. Compared to three other advection schemes commonly employed in ocean simulations (centred differences, flux corrected transport, and multidimensional positive definite advection transport), the SOM method helps preserve the vertical structure of Arctic water masses. The depth, thickness and hydrographic properties of the Arctic Surface Water and the Arctic Atlantic Layer are better represented with SOM than with any of the other three advection algorithms. We also present a convenient method for calculating the implicit numerical diffusivity of upstream based schemes, such as the SOM method, and discuss three approaches for improving the monotonicity properties of the SOM algorithm.  相似文献   

5.
To determine the exchanges between the Nordic Seas and the Arctic Ocean through Fram Strait is one of the most important aspects, and one of the major challenges, in describing the circulation in the Arctic Mediterranean Sea. Especially the northward transport of Arctic Intermediate Water (AIW) from the Nordic Seas into the Arctic Ocean is little known. In the two-ship study of the circulation in the Nordic Seas, Arctic Ocean - 2002, the Swedish icebreaker Oden operated in the ice-covered areas in and north of Fram Strait and in the western margins of Greenland and Iceland seas, while RV Knorr of Woods Hole worked in the ice free part of the Nordic Seas. Here two hydrographic sections obtained by Oden, augmented by tracer and velocity measurements with Lowered Acoustic Doppler Current Profiler (LADCP), are examined. The first section, reaching from the Svalbard shelf across the Yermak Plateau, covers the region north of Svalbard where inflow to the Arctic Ocean takes place. The second, western, section spans the outflow area extending from west of the Yermak Plateau onto the Greenland shelf. Geostrophic and LADCP derived velocities are both used to estimate the exchanges of water masses between the Nordic Seas and the Arctic Ocean. The geostrophic computations indicate a total flow of 3.6 Sv entering the Arctic on the eastern section. The southward flow on the western section is found to be 5.1 Sv. The total inflow to the Arctic Ocean obtained using the LADCP derived velocities is much larger, 13.6 Sv, and the southward transport on the western section is 13.7 Sv, equal to the northward transport north of Svalbard. Sulphur hexafluoride (SF6) originating from a tracer release experiment in the Greenland Sea in 1996 has become a marker for the circulation of AIW. From the geostrophic velocities we obtain 0.5 Sv and from the LADCP derived velocities 2.8 Sv of AIW flowing into the Arctic. The annual transport of SF6 into the Arctic Ocean derived from geostrophy is 5 kg/year, which is of the same magnitude as the observed total annual transport into the North Atlantic, while the LADCP measurements (19 kg/year) imply that it is substantially larger. Little SF6 was found on the western section, confirming the dominance of the Arctic Ocean water masses and indicating that the major recirculation in Fram Strait takes place farther to the south.  相似文献   

6.
The results of model calculations aimed at reproducing climate changes in the Arctic Ocean due to variations in the atmospheric circulation are presented. The combined ocean-ice numerical model is based on NCAR/NCEP reanalysis data and its modified version of CIAF on the state of the lower atmosphere, radiative fluxes, and precipitation from 1948 to the present. The numerical experiments reveal the effect of the ice cover, water circulation, and thermohaline structure of the Arctic Ocean on variations in the state of the atmosphere. We found the heating and cooling periods in the Atlantic water layer, as well as the freshwater accumulation regimes in the Canadian Basin and freshwater flow through the Fram Strait and Canadian Archipelago straits. The numerical model reproduces a reconfiguration of the water circulation of the surface and intermediate layers of the ocean, a shift in the boundary between Atlantic and Pacific waters, and a significant reduction of the ice area.  相似文献   

7.
观测显示过去几十年间北极入海径流呈现增加趋势,CMIP5耦合模式预测表明21世纪北极入海径流仍会增加,在RCP8.5路径下,21世纪末北极入海径流量将会是1950年的1.4倍。本文利用冰-海耦合数值模式研究了北极径流增加对大西洋经向翻转环流的影响。基于两个数值实验的结果表明,如果北极入海径流按每年0.22%的速度(与RCP8.5路径下的速度相当)增加,大西洋经向翻转环流的强度在100、150和200年后将会分别减弱0.6(3%)、1.2(7%)和1.8(11%) Sv。北极入海径流增加导致大西洋经向翻转环流减弱的主要原因是,北极入海径流增加的淡水被输运到北大西洋后,会抑制北大西洋深层水的生成,这也会导致北大西洋深层水海水年龄的增加。  相似文献   

8.
The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (∼2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004–2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.  相似文献   

9.
The saturation of calcite and aragonite in the Arctic Ocean   总被引:1,自引:0,他引:1  
We report on the chemical saturation of CaCO3 in the waters of the Arctic Ocean calculated from total alkalinity (AT) and total dissolved inorganic carbon (CT). Data based on four different expeditions are presented: International Arctic Ocean Expedition (IAOE-91), Arctic Ocean Section 94 (AOS94), Polarstern Arctic '96 expedition (ACSYS 96), and Joint Ocean Ice Study 97 (JOIS 97). The results show a lysocline at around 3500 m for aragonite and that most of the Arctic Ocean sea floor lies above the lysocline for calcite. The only anomaly is the low degree of saturation at the shelf break depth in the Canadian Basin seen in the sections of the AOS94 and JOIS 97 cruises, correlated with nutrient maxima and very low O2 concentration, suggesting decomposition of organic matter. The insignificant variability in degree of saturation between the deep waters of the different basins in the Arctic Ocean indicates a very low sedimentation/remineralisation of organic soft matter.  相似文献   

10.
We use a 9-km pan-Arctic ice–ocean model to better understand the circulation and exchanges in the Bering Sea, particularly near the shelf break. This region has, historically, been undersampled for physical, chemical, and biological properties. Very little is known about how water from the deep basin reaches the large, shallow Bering Sea shelf. To address this, we examine here the relationship between the Bering Slope Current and exchange across the shelf break and resulting mass and property fluxes onto the shelf. This understanding is critical to gain insight into the effects that the Bering Sea has on the Arctic Ocean, especially in regard to recent indications of a warming climate in this region. The Bering Sea shelf break region is characterized by the northwestward-flowing Bering Slope Current. Previously, it was thought that once this current neared the Siberian coast, a portion of it made a sharp turn northward and encircled the Gulf of Anadyr in an anticyclonic fashion. Our model results indicate a significantly different circulation scheme whereby water from the deep basin is periodically moved northward onto the shelf by mesoscale processes along the shelf break. Canyons along the shelf break appear to be more prone to eddy activity and, therefore, are associated with higher rates of on-shelf transport. The horizontal resolution configured in this model now allows for the representation of eddies with diameters greater than 36 km; however, we are unable to resolve the smaller eddies.  相似文献   

11.
Physical regularities of water exchange between the North Atlantic (NA) and Arctic Ocean (AO) in 1958–2009 are analyzed on the basis of numerical experiments with an eddy-permitting model of ocean circulation. Variations in the heat and salt fluxes in the Greenland Sea near the Fram Strait caused by atmospheric forcing generate baroclinic modes of ocean currents in the 0–300 m layer, which stabilize the response of the ocean to atmospheric forcing. This facilitates the conservation of water exchange between the NA and AO at a specific climatic level. A quick response of dense water outflow into the deep layers of the NA through the Denmark Strait to the variations in the North Atlantic Oscillation (NAO) index was revealed on the monthly scale. A response on a time scale of 39 months was also revealed. The quick response on the NAO index variation was interrupted in 1969–1978, which was related to the Great Salinity Anomaly. It was shown that transverse oscillations of the Norwegian Atlantic Current significantly influence the formation of intermediate dense waters in the Greenland and Norwegian seas (GNS). The dense water outflow by bottom current (BC) to the deep layers of the NA through the Faroe Channels with a time lag of 1 year correlates with the transversal oscillations of the Norwegian Current front. The mass transport of the BC outflow from the Faroe Channels to the NA can serve as an integral indicator of the formation and sink of new portions of dense waters formed as a result of mixing of warm saline Atlantic waters and cold freshened Arctic waters in the GNS.  相似文献   

12.
北极河流径流是北冰洋淡水的最大来源,其变化会对北冰洋中的诸多过程有重要影响。本文基于全球高分辨率海洋?海冰耦合模式的模拟结果,研究北冰洋温盐、海冰以及环流对北极河流径流的敏感性。通过对比有气候态北极河流径流输入的控制实验结果和径流完全关闭的敏感性实验结果,研究发现北极径流对北冰洋温度、盐度、海冰以及海洋环流等有显著的影响。关闭北极河流径流后,在河口附近的陆架上温度降低、盐度升高,且导致500 m深度处温度下降以及盐度升高;河口附近的陆架处,海冰密集度与海冰厚度增加。关闭北极河流径流也对北冰洋内的环流有影响:由于缺少来自欧亚大陆的北极径流的输入,穿极漂流与东格陵兰流流速减小且盐度增加;关闭北极径流导致近岸海表面高度降低,沿欧亚陆架的北冰洋边界流减弱,白令海入流增强。通过对比关闭北极径流实验与控制实验的温度和盐度剖面,发现关闭北极径流后大西洋层温度降低,各陆架海盐跃层的梯度减小,盐跃层厚度减小。  相似文献   

13.
1Introduction ThephysicalcharacteristicsintheArcticOcean includewidecontinentalshelves,accountingfor36% oftheocean’ssurfacearea(MooreandSmith,1986) withseasonalicecover.Theprincipalwatersentering theArcticOceanarefromtheNorthAtlanticviathe FramStraitandtheBarentsSea,andtheNorthPacific viatheBeringStrait.Withinthearcticinterior,thewa- tersjoininthelarge-scalecirculationandaresubse- quentlymodifiedbyprocessesofair/sea/iceinterac- tion,riverinflow,andexchangewithsurrounding shelves.Howeve…  相似文献   

14.
西北冰洋表层沉积物黏土矿物分布特征及物质来源   总被引:5,自引:3,他引:2  
西北冰洋表层沉积物黏土矿物分析结果显示其黏土矿物组成的区域分布和变化具有明显的规律性:从楚科奇海到北冰洋深水区,随着水深的增加,蒙皂石和高岭石含量增高,绿泥石和伊利石含量降低。自西往东,伊利石结晶度值降低,化学指数升高。根据Q型聚类分析获得的黏土矿物组合特征,结合周缘陆地的地质背景、河流及洋流情况,对研究区进行了黏土矿物组合分区,讨论了其黏土矿物来源。楚科奇海表层沉积物黏土矿物组合在靠近阿拉斯加一侧海域以Ⅰ类为主,靠东西伯利亚海一侧主要有Ⅱ类、Ⅲ类和Ⅳ类,中部主要为Ⅵ类,主要是西伯利亚和阿拉斯加的火山岩、变质岩以及一些含高岭石的沉积物以及古土壤等,经风化、河流搬运入海,在北太平洋的3股洋流及西伯利亚沿岸流的作用下沉积形成的。西北冰洋深水区表层沉积物的黏土矿物组合以Ⅰ类和Ⅴ类为主,表明其沉积物来源为欧亚陆架和加拿大北极群岛周缘海域的海冰沉积和大西洋水体的搬运以及加拿大马更些河的河流物质输入。  相似文献   

15.
The WOCE-era 3-D Pacific Ocean circulation and heat budget   总被引:2,自引:0,他引:2  
To address questions concerning the intensity and spatial structure of the three-dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high-quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre-WOCE surveys of similar quality, and time-averaged direct-velocity and historical hydrographic measurements about the equator.An inverse box model formalism is employed to estimate the absolute along-isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large-scale WOCE Pacific circulation can be described as two shallow overturning cells at mid- to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air–sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air–sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres.  相似文献   

16.
The problem of numerical modeling and analysis of the large-scale World Ocean circulation variability under variations of the external forcing is considered. A numerical model was developed in the INM RAS and is based on the primitive equations of the ocean circulation written in a spherical generalized σ-coordinate system. The model’s equations are approximated on a grid with resolution of 2.5° × 2° × 33, and the North Pole is displaced to the continental point (60°E, 60.5°N). There are two stages for the numerical experiments. The quasi-equilibrium circulation of the World Ocean under the climatological atmospheric forcing is simulated at the first stage. The run is carried out over a period of 3000 years during which a quasi-equilibrium model regime is formed. At the second stage, the sensitivity of the model ocean circulation to the atmospheric forcing perturbations in the Southern Hemisphere is studied. According to the results, the strongest regional changes in the hydrography take place in the Arctic Ocean. Substantial changes of sea’s surface height and local anomalies of the temperature and salinity are formed there.  相似文献   

17.
1Introduction CarboncyclingintheArcticOceanplaysanim- portantroletoglobalchange.Traditionally,marine productivityintheArcticOceanisthoughttobevery low,andthussomebiogeochemicalprocessessuchas particleexportandcyclingofnutrientsarenotsoac- tivebecauseofthembeingcoveredperenniallybyice, lowtemperatureandshorttimeofphotosynthesis (PlattandRao,1975).Afewpreviousestimatesof particulateorganiccarbon(POC)exportindicateda neglectablemagnitudeinthecentralArcticOcean (Baconetal.,1989).However,recen…  相似文献   

18.
Variations in hydrophysical parameters in the Arctic Ocean and the North Atlantic are studied on the basis of numerical simulation with the use of an ocean circulation model (including ice formation and drift). The main circulation and ice-drift modes have been ascertained depending on atmospheric cycles. The possibilities of the parameterization of intermediate and deep water formation in numerical models of polar ocean dynamics are considered. The effect of the interannual variability of the discharge of Siberian rivers on the distribution and propagation of fresh water in this region are estimated from numerical experiments. The simulation results of the propagation of the dissolved methane from Siberian rivers are presented.  相似文献   

19.
Lipids in surface sediment transects across the Arctic Ocean were identified to define the sources of organic carbon and the transport of material in the ocean basin. Sterols representing diatoms (24-methylcholesta-5,24(28)-dien-3β-ol, 24-methylcholesta-5,22-dien-3β-ol) and dinoflagellates (4α,23,24-trimethylcholest-22-en-3β-ol) together with algal polyunsaturated fatty acids (20:5, 22:6) demonstrated the importance of primary production to organic matter inputs on the Chukchi Shelf. The presence of terrestrial biomarkers including long-chain n-alkanes and mono- and dicarboxylic acids in shelf sediments indicated that while the fraction of terrestrial biomarkers was small compared to marine material, the transport of allochthonous material impacts carbon cycling on the shelf. Algal biomarkers were found in all surficial sediments from the central Arctic basins, demonstrating that some fraction of primary production reached bottom sediments despite ice cover and light limitation. Marine markers represented a small fraction of the total lipids in central basin sediments. This implies that the basins are less productive than shallow waters, significant degradation occurs before the organic matter reaches the sediment–water interface, and substantial amounts of vascular plant material are exported to the central Arctic. Circulation and topographical features, such as the Transpolar Drift and the Lomonosov Ridge, appear to have an important influence on the transport and focusing of terrestrial material in the Arctic Ocean basins.  相似文献   

20.
中国物理海洋学研究70年:发展历程、学术成就概览   总被引:2,自引:2,他引:0  
本文概略评述新中国成立70年来物理海洋学各分支研究领域的发展历程和若干学术成就。中国物理海洋学研究起步于海浪、潮汐、近海环流与水团,以及以风暴潮为主的海洋气象灾害的研究。随着国力的增强,研究领域不断拓展,涌现了大量具有广泛影响力的研究成果,其中包括:提出了被国际广泛采用的“普遍风浪谱”和“涌浪谱”,发展了第三代海浪数值模式;提出了“准调和分析方法”和“潮汐潮流永久预报”等潮汐潮流的分析和预报方法;发现并命名了“棉兰老潜流”,揭示了东海黑潮的多核结构及其多尺度变异机理等,系统描述了太平洋西边界流系;提出了印度尼西亚贯穿流的南海分支(或称南海贯穿流);不断完善了中国近海陆架环流系统,在南海环流、黑潮及其分支、台湾暖流、闽浙沿岸流、黄海冷水团环流、黄海暖流、渤海环流,以及陆架波方面均取得了深刻的认识;从大气桥和海洋桥两个方面对太平洋–印度洋–大西洋洋际相互作用进行了系统的总结;发展了浅海水团的研究方法,基本摸清了中国近海水团的分布和消长特征与机制,在大洋和极地水团分布及运动研究方面也做出了重要贡献;阐明了南海中尺度涡的宏观特征和生成机制,揭示了中尺度涡的三维结构,定量评估了其全球物质与能量输运能力;基本摸清了中国近海海洋锋的空间分布和季节变化特征,提出了地形、正压不稳定和斜压不稳定等锋面动力学机制;构建了“南海内波潜标观测网”,实现了对内波生成–演变–消亡全过程机理的系统认识;发展了湍流的剪切不稳定理论,提出了海流“边缘不稳定”的概念,开发了海洋湍流模式,提出了湍流混合参数化的新方法等;在海洋内部混合机制和能量来源方面取得了新的认识,并阐述了混合对海洋深层环流、营养物质输运等过程的影响;研发了全球浪–潮–流耦合模式,推出一系列海洋与气候模式;发展了可同化主要海洋观测数据的海洋数据同化系统和用于ENSO预报的耦合同化系统;建立了达到国际水准的非地转(水槽/水池)和地转(旋转平台)物理模 型实验平台;发展了ENSO预报的误差分析方法,建立了海洋和气候系统年代际变化的理论体系,揭示了中深层海洋对全球气候变化的响应;初步建成了中国近海海洋观测网;持续开展南北极调查研究;建立了台风、风暴潮、巨浪和海啸的业务化预报系统,为中国气象减灾提供保障;突破了国外的海洋技术封锁,研发了万米水深的深水水听器和海洋光学特性系列测量仪器;建立了溢油、危险化学品漂移扩散等预测模型,为伴随海洋资源开发所带来的风险事故的应急处理和预警预报提供科学支撑。文中引用的大量学术成果文献(每位第一作者优选不超过3篇)显示,经过70年的发展,中国物理海洋学研究培养了一支实力雄厚的科研队伍,这是最宝贵的成果。这支队伍必将成为中国物理海洋学研究攀登新高峰的主力军。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号