首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
大直径超长桩的可打入分析是海洋平台打桩施工顺利进行的重要保障,土塞是否闭合的判断对于桩基可打入性分析具有较大的影响,因此,合理准确的土塞判断结果对提高桩的可打入分析的准确性具有重要的意义。以现场静力触探(CPTU)试验数据为依据,采用孔扩张理论推导了基于CPTU测试结果的桩端土的极限承载力计算公式;在求解桩端土体承载力时考虑了管桩与土体的刚度差异,同时考虑到打桩过程中的土体扰动。采用Randolph推荐的方法得到了土塞阻力,将两者进行比较,进而判断土塞的状态。通过实际工程的实测数据,对各个土层的土塞状况进行了判别,并根据判别情况采用波动方程的方法对桩基的可打入性进行了分析,将预测结果和现场的打桩记录进行了比较。计算结果显示,提出的方法与实测结果更为接近,有效地提高了桩的可打入性的预测精度。  相似文献   

2.
Helical piles are structural deep foundation elements, which can be categorized as torque-driven piles without any limitations to implement in marine situations. Different methods are used to predict the axial capacity of helical piles, such as static analysis, but have some limitation for this type of piles on marine conditions. In situ testing methods as supplement of static analysis have been rarely used for helical piles. In geotechnical engineering practice, the most common in situ tests particularly applicable for coastal or offshore site investigation are cone penetration test (CPT) and piezocone penetration test (CPTu). The CPT is simple, repeatable, and prepares the continuous records of soil layers. In this paper, a data bank has been compiled by collecting the results of static pile load tests on thirty-seven helical piles in ten different sites including CPT or CPTu data. Axial capacities of thirty-seven helical piles in different sites were predicted by direct CPT methods and static analysis. Accuracy estimation of ten direct CPT methods to predict the axial capacity of helical piles was investigated in this study. Comparisons have been made among predicted values and measured capacity from the pile load tests. Results indicated that the recently developed methods such as NGI-05 (2005), ICP-05 (2005), and UWA-05 (2005) predicted axial capacity of helical piles more accurately than the other methods such as Meyerhof (1983), Schmertmann (1978), Dutch (1979), LCPC (1982), or Unicone (1997). However, more investigations are required to establish better correlation between CPT data and axial capacity of helical piles.  相似文献   

3.
This study has evaluated the vertical bearing capacity by conducting static load tests for noise-free and vibration-free screw pretensioned spun high-strength concrete (PHC) piles installed using two different methods (end-squirting shoe and pre-boring methods). Vertical bearing capacity differences seem to occur due to the displacement of soils near the external circumference of a pile, depending on the installation method. A method by which to evaluate the bearing capacity of screw concrete piles is suggested by considering the equations that already have been used to calculate the bearing capacity of piles. Based on static load tests and analysis, the pile installed using the end-squirting shoe method was assumed to be a bored pile and it was reasonable to use the equation proposed by the Japanese Geotechnical Society. At the same time, the pile installed using the pre-boring method was deemed a low soil displacement pile and so it was reasonable to apply the equations proposed for calculating the bearing capacity of the driven pile suggested by the Architectural Institute of Japan.  相似文献   

4.
承受水平荷载作用的桩基,规范中常采用m法进行桩基水平承载力的计算,地基土水平地基抗力系数的比例系数m值在规范中根据地基土的状态、类别以表格给出。在地基勘察中,现在广泛采用静力触探试验。直接利用静力触探数据给出比例系数m值。将使桩基设计所用参数更加直接准确。本文利用天津地区地层大量静力触探资料与地基土状态数据,利用统计分析回归方法,总结出地基土的液性指数IL与静力触探参数锥尖阻力qc及摩阻比Rf间的关系式,针对天津的地层土体,给出利用静力触探资料查用m值的表格,为桩基的设计计算提供资料。  相似文献   

5.
利用东海陆架海底输油管道路由调查获得的孔压静力触探数据和钻探资料等,采用统计分析的方法,对管道路由区5 m以浅土体的孔压静力触探曲线特征、土的分类方法鉴别作了探讨,结果表明:研究区5 m以浅黏性土的锥尖阻力(qc),侧摩阻力(fs)值较小,且随深度呈线性增加,粉质土的qc,fs值增大,但随深度线性增加规律不明显,砂类土的qc值急剧增大,但fs值变化不大;Robertson法和Eslami-Fellenius法两种土类划分方法均适用于研究区浅表层软土的土类划分,但Robertson法在判别粉质土时受到一定限制,Eslami-Fellenius法判别较为准确,应用简单。本研究可为我国在海底管线工程路由勘察中直接利用孔压静力触探(CPTU)参数划分土层和判别土类作铺垫。  相似文献   

6.
As indicated by the profile of overconsolidation ratio (OCR), the stress history of a soil deposit is one of the dominant factors that influence the engineering behavior of soils. A commonly used method to obtain the parameter is the laboratory oedometer test, which is of low accuracy and time consuming because of inevitable sample disturbance. These difficulties can be overcome by in situ pizeocone penetration test, which provides continuous measurement of cone resistance, sleeve friction, and pore water pressure induced during the penetration. Though many methods have been proposed to estimate the preconsolidation pressure and overconsolidation ratio of clay deposits, their validity still needs to be proved. In this study, existing empirical methods for interpreting stress history of clays through piezocone tests are briefly reviewed. It is shown that regional correlations are valid. Piezocone tests utilizing a Vertek-Hogentogler CPTU truck that have been completed at different sites in the Jiangsu province of China. Existing correlations are compared with these field test data. It is shown that the correlation based on normalized net tip resistance is pretty accurate for determining the overconsolidation ratio of Quaternary clay deposits.  相似文献   

7.
This article presents a new approach to estimate hydraulic conductivity of soil from cone penetration test with pore water pressure measurement (referred to as CPTU hereafter). The proposed approach is based on the test result of the spherical cavity expansion of the soil at the tip of a pile. During the piezocone penetration, the flow shape of pore water around the tip of the cone is assumed to be a spherical crown and induced excess pore water is assumed to dissipate from the crown surface. Based on this assumption, a bi-linear relation between the piezocone sounding metric (which is the product of the pore water pressure ratio Bq and the tip resistance Qt) and the hydraulic conductivity index KD is derived to estimate the hydraulic conductivity of the soil layer. The derived approach expands the applicable range of existing approaches in the literature. It is demonstrated that the proposed approach can cover the entire tip angles of the cone and the modified equation can fit the CPTU test data well.  相似文献   

8.
Drilled displacement piles (DDPs) are known as an alternative to conventional foundations in coastal areas, given the elimination of environmental impacts and difficulties caused by installation process of driven piles and more consistency with environment. Despite increasing employment of these piles, the extent of research works does not yet suffice the requisites to reach a routine design. This paper aims to analyze six cone penetration test (CPT)-based methods of determining the bearing capacity of DDP. The statistical and reliability-based approaches were used in two parts of assessing performance of the methods with respect to soil–pile characteristics followed by evaluating reliability of the prediction outcome. A database is compiled including 65 DDP load tests with adjacent CPT profiles. Performance of the methods are analyzed. Finally, a reliability parameter, i.e., confidence interval, is introduced to demonstrate a more realistic insight into the evaluations by expressing performance of the methods in terms of a range for possible average values of the predictions ratios, rather than simply an arithmetic mean. The study reveals that the commonly used CPT-based methods which have not been specifically developed for DDP show great potential for design. The results indicate that the investigated methods can have promising performance if some modifications are applied.  相似文献   

9.
The pile-driving method produces considerable noise and vibrations. Hence, an auger-drilled pile method was developed as a low-noise and -vibration substitute. However, this method does not guarantee the bearing capacity of the pile unless some amount of pile-driving is performed. Therefore, the noise and vibration problems cannot be completely solved. In this study, a prebored screw pile method is proposed to solve these problems. In this method, piles are constructed by the rotary penetration of a screw pile into a prebored hole filled with some cement milk and whose diameter is smaller than that of the screw pile. To determine the shape of the screw pile, laboratory tests with model screw piles were conducted. Also, field load tests were conducted on an actual screw pile fabricated based on the laboratory test result and on a smooth-surfaced pile. In addition, the behavior of the screw pile was estimated by using three-dimensional finite element analysis. The results of the field load test and the numerical simulation showed that the ultimate bearing capacity and the unit skin friction of the screw pile are very superior to those of the smooth-surfaced pile and the cement milk is an important factor in the prebored screw pile method.  相似文献   

10.
Abstract

An experimental study of the performance of concrete pipe piles during installation under different penetration speeds and static load tests on the piles in sand is presented. The applied jacking force, the amount of pile penetration, length of soil plug formed and ultimate bearing capacity were measured during the model tests. The results showed that the concrete pipe piles were partially plugged and the behavior of the soil plug was significantly affected by the penetration speed. The lower the penetration speed, the larger the soil plug formed which in turn leads to a greater ultimate bearing capacity. The size of soil plug can be evaluated by the m value defined as the ratio of the volume of the soil plug to that of the penetrated pile wall. The relationship between the m value and the penetration speeds can be used to estimate the amount of soil plug and the depth of penetration for an open-ended concrete pipe pile jacked into sand.  相似文献   

11.
The load–penetration response of a foundation is one of the fundamental aspects of geotechnical engineering. In sand, the bearing capacity approach requires the operative friction angle to be known, which introduces significant uncertainty to the prediction. The predictive method developed in this paper eliminates the need to determine the friction angle. The central concept is the direct correlation of in situ piezocone penetrometer measurements to the load–penetration response of foundations.The correlation factor is shown to depend primarily on the sand relative density. The footing shape has a minor influence on the correlation factor. This study aims at large diameter foundations used in the offshore industry, where the variation in correlation coefficient is minor. However, context is provided to previous research on smaller diameter foundations, which shows the dependence on the footing diameter (through the well-known stress level effect).The proposed method is shown to perform well against load–penetration data from centrifuge experiments on footings of different diameters and elevation shapes. The performance against field data in particular provides significant confidence in the CPT based prediction method of foundation penetration in sand developed here.  相似文献   

12.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   

13.
Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient Nc are revealed,and the calculation method of Nc is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section.  相似文献   

14.
A static drill rooted nodular pile is a new type of composite pile foundation with high bearing capacity, and mud emissions can be largely reduced using the static drill rooted method. This report presents a model test on the behavior of this composite pile in a test box. The load-displacement response, axial force, skin friction, and mobilized base load are discussed in the report; in particular, the force in the cemented soil was investigated based on the measured data. Moreover, the finite element software ABAQUS was used to help investigate this behavior more thoroughly. It was determined that the function of the cemented soil around the pile shaft was different from that at the enlarged pile base; the stress in the cemented soil around the shaft increased suddenly when nearing the pile base; the ultimate skin friction obtained in the model test was larger than that estimated in the field test; and the relative displacement between the precast nodular pile and the cemented soil could be ignored during the loading process, which corresponded to the result of the field test and demonstrated that the nodular pile and cemented soil act as one entity during the loading process.  相似文献   

15.
The use of the piezocone penetration test (CPTU) in a geotechnical site investigation offers direct field measurement on stratigraphy and soil behavior. Compared with some traditional investigation methods, such as drilling, sampling and field inspecting method or laboratory test procedures, CPTU can greatly accelerate the field work and hereby reduce corresponding operation cost. The undrained shear strength is a key parameter in estimation of the stability of natural slopes and deformation of embankments in soft clays. This paper provides the measurements of in situ CPTU, field vane testing and laboratory undrained triaxial testing of Lianyungang marine clay in Jiangsu province of China. Based on the literature review of previous interpretation methods, this paper presents a comparison of field vane testing measurements to CPTU interpretation results. The undrained shear strength values from both the field vane tests and cone penetration resistances are lowest at the mid-depths of the marine clay layers, and the excess pore water pressures are highest at the mid-depths of the marine clay layers, indicating that the marine clay layer is underconsolidated.  相似文献   

16.
自升式钻井平台插桩是地基土在桩靴荷载作用下发生连续的塑性破坏的动态过程,当地基极限承载力等于桩靴荷载时插桩完成。经典土力学极限承载力理论对土体潜在滑动面做了假设,无法有效分析土体内部的破坏过程。本研究应用有限元法(FEM )对插桩过程进行了模拟,得到地基土的破坏机制以及中间荷载下土体的应力、应变情况,通过和各理论公式计算的极限承载力进行对比分析,分析影响地基极限承载力的因素。研究表明,基础宽度与硬土层厚度的比值 B/H越大,下卧软土层越容易发生塑性破坏,极限承载力明显下降,当B/H<0.286时,可以忽略下卧软土层对地基承载力的影响。  相似文献   

17.
某港口堆场地基上部5.0m系吹填而成,地表下18m范围均属软土,经真空预压初级加固后地基承载力仅在80—90kPa,局部区域上部淤泥土层土性指标较差,含水量大于50%,地基承载力不足60kPa。为了使地基达到230kPa的承载要求,设计采用深层搅拌法加固超软弱地基。通过现场成桩工艺试验和检测表明,桩身水泥土强度在90d龄期时大于1.80MPa,单桩承载力标准值大于150kN,以φ600桩径、桩长13.5m、置换率为0.308和φ500桩径、桩长13.5m、置换率为0.267两种方案布置的复合地基承载力标准值均超过了230kPa的设计要求。试验结果表明,深层搅拌法在港口超软弱地基土应用只要施工工艺适当,完全可以使地基承载力提高2—3.5倍以土,从而节省大量的工程投资。  相似文献   

18.
The super-long and large-diameter steel pipe piles are often adopted for the construction of offshore oil platforms in deep sea. One constructability issue related to driving heavy pipe piles is the pile running. The term pile running refers to the quick penetration of a pile into the seabed as a result of its high self-weight and low resistance from the seabed. The unexpected pile running can cause the steel wire of the hammer to break or even the loss of the hammer. A case study of pile running at an oil platform is introduced in this paper. A simplified theoretical method is proposed to explain the mechanisms of the pile running in this case. A factor of friction degradation is proposed to calculate the dynamic skin friction from the static ultimate skin friction of surrounding soil. The comparisons between the predictions to the case history show that the proposed simplified method can be used to predict the pile running condition.  相似文献   

19.
以浙江舟山大陆连岛工程宁波连接线项目为依托,选择1根典型摩擦桩开展了自平衡试桩法在沿海软弱地层中的试验研究,并对自平衡测试后的试桩进行了传统桩顶堆载验证试验。介绍了自平衡试桩法从设计、现场试验及数据分析的全过程及各阶段的设计要点,并对容易引起测量误差的现有位移测量方法进行了改进,避免了易发缺陷的荷载箱处虚位移的影响。试验测得了试桩的负摩阻力系数值及单桩承载力值,其结果符合试验设计要求,试桩承载力满足设计要求,相关试验设计及测得的参数可以作为此类地层中自平衡测试的参考。经与传统桩顶堆载验证试验对比可知,自平衡试桩法在工程上的应用具有合理性与准确性。  相似文献   

20.
利用室内半模试验和颗粒流数值模拟,揭示多层砂土地基扩底桩单桩抗压承载特性及变形特征。结果表明,通过对比分析极限承载力与H_h/D(持力层厚度与扩大头直径之比)的关系可以看出,单桩的抗压极限承载力随H_h/D逐渐增加,当H_h/D超过2.0时,极限承载力基本不再增加,此时的单桩抗压极限承载力稳定在300.01~303.25 N,是H_h/D=0.5时极限承载力(183.83 N)的1.65倍。扩大头下部土体发生局部压缩-剪切破坏,破坏面从扩大头底面边缘向斜下方扩展,在水平方向影响范围达到最大后逐渐向桩内侧收缩;荷载作用越大,地基破坏区域越大,相应的极限抗压承载力也越大;持力层厚度增加,扩大头分担的荷载比例增大,分担的荷载达到稳定需要的桩顶位移也越大,H_h=0.5 D试验扩大头分担的荷载比例稳定时为60%,对应的桩顶位移约为29 mm;桩顶位移达到33 mm后,H_h=1.0~3.0 D试验稳定在63%~65%之间;通过细观颗粒流理论对砂土移动特性的研究发现,持力层厚度从0.5 D增大至2.0 D,破坏面的起始扩展角度从31°增大至42°。数值模拟研究结果与模型试验数据吻合效果良好,证明该方法分析多层砂土地基扩底桩单桩抗压荷载传递机理是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号