首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文主要介绍了南海及邻近海域大气-海浪-海洋耦合精细化数值预报系统的研制概况。预报区域为99°E~135°E,15°S~45°N,包括渤海、黄海、东海和南海及其周边海域。为了给耦合预报模式提供较准确的预报初始场,在预报开始之前,分别进行了海浪模式和海洋模式的前24小时同化后报模拟。海浪模式和海洋模式都采用了集合调整Kalman滤波同化方法,海浪模式同化了Jason-2有效波高数据;海洋模式同化了SST数据、MADT数据和ARGO剖面数据。为了改进海洋温度和盐度的模拟,我们在海洋模式的垂向混合方案中引入波致混合和内波致混合的作用。预报系统的运行主要包括两个阶段,首先海浪模式和海洋模式进行了2014年1月至2015年10月底的同化后报模拟,强迫场源自欧洲气象中心的六小时的再分析数据产品。然后耦合预报系统将同化后报模拟的结果作为初始场进行了14个月的耦合预报。预报产品包括大气产品(气温、风速风向、气压等)、海浪产品(有效波高和波向等)、海流产品(温度、盐度和海流等)。一系列观测资料的检验比较表明该大气-海浪-海洋耦合精细化数值预报系统的预报结果较为可靠,可以为南海及周边海洋资源开发和安全保障提供数据和信息产品服务。  相似文献   

2.
卫星高度计资料在三维海温和盐度数值预报中的应用   总被引:2,自引:0,他引:2  
随着卫星遥感观测技术的发展,越来越多的卫星观测资料被应用于数值模式的同化研究中.基于国家海洋环境预报中心西北太平洋三维湿盐流预报系统,利用法国CLS中心的沿轨高度计资料的海表面高度异常的融合数据,结合基于三维变分的OVALS(ocean variational analysis system)同化系统,在垂向将海面高度...  相似文献   

3.
基于ROMS模式的南海SST与SSH四维变分同化研究   总被引:1,自引:0,他引:1  
卫星遥感观测获得了大量高分辨率的海面实时信息,包括海面温度(SST)和海面高度(SSH)等,同化进入数值模式可有效提升模拟精度。本文基于ROMS模式与四维变分同化方法(4DVAR),使用AVHRR SST和AVISO SSH数据,开展了南海区域同化实验。为检验同化的效果,分别利用HYCOM再分析资料和Argo温盐实测数据分析了同化结果的海面高度、流场及温盐剖面的精度。对比结果表明,SST和SSH的同化能够改善ROMS的模拟结果:同化后海面高度场能够更为准确地捕捉海洋的中尺度特征,与HYCOM海面高度再分析资料相比,平均绝对偏差和均方根误差分别为0.054 m和0.066 m;与HYCOM 10 m层流场相比,东向与北向流速平均绝对偏差分别为0.12 m/s和0.11 m/s,相比未同化均提升约0.01 m/s;温盐同化结果与Argo温盐实测具有较高的一致性,温度和盐度平均绝对偏差为0.45℃、0.077,均方根误差为0.91℃、0.11,单个的温盐廓线对比说明,同化结果与HYCOM再分析资料精度相当。  相似文献   

4.
变分伴随数据同化在海表面温度预报中的应用研究   总被引:8,自引:1,他引:8  
将变分伴随数据同化技术应用于海表面温度(SST)数值预报.采用中国近海海表面温度短期数值预报模式,将船舶测报海表面温度同化到该模型中,对SST初始场进行优化.文中给出了中国近海SST数值预报同化模型5d试报结果与观测值的比较,整个区域的均绝差由同化前的2.71℃降至0.87℃,即变分伴随数据同化对改进SST数值预报的效果是比较明显的,表明它可成为SST数值预报初始化的新方法.  相似文献   

5.
OSTIA数据在中国近海业务化环流模型中的同化应用   总被引:3,自引:0,他引:3  
The prediction of sea surface temperature(SST) is an essential task for an operational ocean circulation model. A sea surface heat flux, an initial temperature field, and boundary conditions directly affect the accuracy of a SST simulation. Here two quick and convenient data assimilation methods are employed to improve the SST simulation in the domain of the Bohai Sea, the Yellow Sea and the East China Sea(BYECS). One is based on a surface net heat flux correction, named as Qcorrection(QC), which nudges the flux correction to the model equation; the other is ensemble optimal interpolation(En OI), which optimizes the model initial field. Based on such two methods, the SST data obtained from the operational SST and sea ice analysis(OSTIA) system are assimilated into an operational circulation model for the coastal seas of China. The results of the simulated SST based on four experiments, in 2011, have been analyzed. By comparing with the OSTIA SST, the domain averaged root mean square error(RMSE) of the four experiments is 1.74, 1.16, 1.30 and 0.91°C, respectively; the improvements of assimilation experiments Exps 2, 3 and 4 are about 33.3%, 25.3%, and 47.7%, respectively.Although both two methods are effective in assimilating the SST, the En OI shows more advantages than the QC,and the best result is achieved when the two methods are combined. Comparing with the observational data from coastal buoy stations, show that assimilating the high-resolution satellite SST products can effectively improve the SST prediction skill in coastal regions.  相似文献   

6.
中国海及邻近海域卫星观测资料同化试验   总被引:4,自引:0,他引:4  
利用1个基于POMgcs海洋模式和多重网格三维变分同化方法建立的中国海及邻近海域海面高与三维温盐流数值预报模型,通过一系列数值试验,研究了同化卫星测高和卫星遥感海面温度观测资料对该模型预报能力的影响。试验结果表明,同化卫星测高资料可明显改善海面高度与三维温度和盐度的分析预报效果,使1 200 m以上的温度预报误差减小0.16℃,并能有效提高对海洋中尺度现象的预报能力;同化卫星遥感海面温度对100 m以上的温度和盐度的预报效果有所改善,可使海面温度的预报误差减小10%。  相似文献   

7.
海面盐度(sea surface salinity,SSS)是研究海洋变化及其气候效应重要的物理量,对海洋生态环境、海洋可持续发展至关重要.为了提高海面盐度反演精度,本文通过对SMAP卫星L波段微波辐射计测量的亮温数据进行海面盐度反演研究,考虑风、浪等影响海面粗糙度的环境因子对Klein-Shift模型(简称K-S模型...  相似文献   

8.
An ensemble optimal interpolation (EnOI) data assimilation method is applied in the BCC_CSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework. Pseudo-observations of sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), temperature and salinity (T/S) profiles were first generated in a free model run. Then, a series of sensitivity tests initialized with predefined bias were conducted for a one-year period; this involved a free run (CTR) and seven assimilation runs. These tests allowed us to check the analysis field accuracy against the “truth”. As expected, data assimilation improved all investigated quantities; the joint assimilation of all variables gave more improved results than assimilating them separately. One-year predictions initialized from the seven runs and CTR were then conducted and compared. The forecasts initialized from joint assimilation of surface data produced comparable SST root mean square errors to that from assimilation of T/S profiles, but the assimilation of T/S profiles is crucial to reduce subsurface deficiencies. The ocean surface currents in the tropics were better predicted when initial conditions produced by assimilating T/S profiles, while surface data assimilation became more important at higher latitudes, particularly near the western boundary currents. The predictions of ocean heat content and mixed layer depth are significantly improved initialized from the joint assimilation of all the variables. Finally, a central Pacific El Ni?o was well predicted from the joint assimilation of surface data, indicating the importance of joint assimilation of SST, SSH, and SSS for ENSO predictions.  相似文献   

9.
为了建立高精度的海洋表面盐度预测模型,采用BP神经网络的方法,针对SMOS卫星level 1C级亮度温度数据和辅助数据建立了一种海表面盐度预测模型,以ARGO浮标观测值作为海表盐度实测值来检验新模型预测结果的准确度,同时利用验证集对模型的精度进行验证。结果表明:通过新模型预测的海表盐度(SSS0)比SMOS卫星的3个粗糙度模型盐度产品(SSS1,SSS2,SSS3)精度高;SSS0,SSS1,SSS2,SSS3与ARGO浮标实测盐度(SSS ARGO)的均方根误差分别为0.8473,2.0417,2.0288和2.0805,平均绝对误差分别为0.7553,1.4226,1.4216和1.4566,SSS0与SSS ARGO的均方根误差和绝对平均误差值都明显小于SSS1,SSS2和SSS3与SSS ARGO的;由此可见,建立的海表盐度预测模型精度较高。新模型为海表盐度的反演算法提供了新思路。  相似文献   

10.
文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA; generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练, 构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型, 并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能。首先, 利用独立的2016年SODA海表数据作为模型输入进行理想重构试验, 结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰, 与世界海洋图集WOA13资料相比减小约50%和60%。然后, 利用卫星观测的海表信息作为模型输入进行实际应用试验, 并与Argo观测剖面进行比较评估。试验结果表明, 重构模型能有效表征海水温、盐特征, 其中重构温、盐MRMSE分别为0.79℃和0.16‰, 相比WOA气候态减小27%和11%。误差的垂向分布显示, 重构温度RMSE从海表向下迅速增大, 至100m达到峰值1.35℃, 而后又迅速回落,至250m处为0.81℃, 跃层往下不断减小; 重构盐度RMSE基本随深度增大而减小, 误差峰值位于25m附近, 约为0.25‰。此外, Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征。  相似文献   

11.
文章基于天气研究和预报(weather research and forecasting, WRF)模式中的FY-3D卫星微波湿度计Ⅱ(micro-wave humidity sounder 2, MWHS-2)辐射率资料的直接同化模块, 采用三维变分(three dimensional variation, 3DVar)方法在晴空条件下同化MWHS-2辐射率资料, 考察MWHS-2辐射率资料同化对台风“米娜”(2019)预报的影响。文中设计了4组试验, 第一组试验不同化任何资料, 第二组试验同化了单独的全球通信系统(global telecommunications system, GTS)常规资料, 第三组试验联合同化了GTS常规资料和MWHS-2辐射率资料, 第四组试验将MWHS-2辐射率资料换成先进技术微波探测计(advanced technology microwave sounder, ATMS)辐射率资料同化。研究结果表明: 偏差订正后各通道观测和背景场差值的均值趋于0, 同化后分析场相对观测的标准差与均方根误差较背景场显著减小, 同化过程是有效的。与仅同化GTS常规资料和同化ATMS资料的试验相比, 同化晴空MWHS-2辐射率资料后的增量场在台风中心附近有负的高度增量和正的温度增量, 从动力与热力上有助于台风的维持。在确定性预报最后的12h, 同化晴空MWHS-2辐射率资料的试验能够改进500hPa环流形势的模拟, 加强西南方向引导气流的强度, 从而最终减小台风路径预报的误差。  相似文献   

12.
In order to improve the ocean forecasting in the North Sea and Baltic Sea, an assimilation scheme based on a bottom-topography-dependent anisotropic recursive filter has been used in this study. This scheme can stretch or flatten the shape of a local representative contour surface of the background error covariance function into the form of an ellipse. Furthermore, the computing efficiency has been largely improved due to implicit computation of the background error covariance. A two-month experiment has been used for verifying the impact of assimilating ocean profile observations on ocean forecasting. The results indicate that the use of temperature and salinity profiles can largely improve the oceanic forecasting. The root mean square differences between the forecasts and observations for temperature and salinity have been reduced by 36% and 18% in the experiment period, respectively. Moreover, it is found that the anisotropic recursive filter approach is especially efficient in areas with complex coastlines and sharp fronts, e.g., inner Danish waters. The results also show that the propagation of observation information from an observation position to its neighboring grid points is closely related to currents.  相似文献   

13.
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.  相似文献   

14.
西北太平洋海表温度融合产品交叉比对分析   总被引:2,自引:0,他引:2  
奚萌  宋清涛  李文君  邹斌  林明森 《海洋学报》2017,39(12):136-152
海表温度产品是研究全球海洋大气系统的重要数据源,在海洋相关领域的研究和应用方面具有重要价值。以西北太平洋海域为研究区域,本文对2007-2014年的3个海表温度融合数据(AVHRR OISST,MISST和OSTIA)的产品特性与Argo浮标进行了真实性检验,并对融合产品进行了交叉比对分析。结果表明,3个融合产品在空间尺度上均能反映西北太平洋海域的海表温度变化趋势。融合数据与Argo浮标的平均偏差在±0.1℃之间,均方根误差小于0.9℃。融合数据与浮标数据存在明显的季节性变化,其中冬季融合数据与浮标数据的平均偏差和均方根误差较小。在高纬海域,融合产品和浮标存在正偏差。与另两个融合产品相比,OSTIA的数据质量与Argo浮标最为接近。3个融合产品在近岸和高纬海域差异较大,三者对海冰的标识和处理方式不同对融合结果也有影响。在2012年6月之前MISST和OSTIA的海表温度数据质量更为接近,但在此之后MISST存在系统误差。红外数据、微波数据和实测数据作为输入数据,是制作高时空分辨率高精度海表温度融合产品必不可少的要素。  相似文献   

15.
In this study, sea surface salinity(SSS) Level 3(L3) daily product derived from soil moisture active passive(SMAP)during the year 2016, was validated and compared with SSS daily products derived from soil Moisture and ocean salinity(SMOS) and in-situ measurements. Generally, the root mean square error(RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the sea surface temperature(SST). Then, a regression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.  相似文献   

16.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.

The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.

Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.  相似文献   

17.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.

The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.

Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.  相似文献   

18.
Several remotely sensed sea surface salinity(SSS) retrievals with various resolutions from the soil moisture and ocean salinity(SMOS) and Aquarius/SAC-D missions are applied as inputs for retrieving salinity profiles(S) using multilinear regressions. The performance is evaluated using a total root mean square(RMS) error, different error sources, and the feature resolutions of the retrieved S fields. In the mixed layer of the salinity, the SSS-S regression coefficients are uniformly large. The SSS inputs yield smaller RMS errors in the retrieved S with respect to Argo profiles as their spatial or temporal resolution decreases. The projected SSS errors are dominant, and the retrieved S values are more accurate than those of climatology in the tropics except for the tropical Atlantic, where the regression errors are abnormally large. Below that level, because of the influence of a sea level anomaly, the areas of high-accuracy S values shift to higher latitudes except in the high-latitude southern oceans, where the projected SSS errors are abnormally large. A spectral analysis suggests that the CATDS-0.25° results are much noisier and that the BEC-L4-0.25° results are much smoother than those of the other retrievals. Aquarius-CAP-1° generates the smallest RMS errors, and Aquarius-V2-1° performs well in depicting large-scale phenomena. BEC-L3-0.25°,which has small RMS errors and remarkable mesoscale energy, is the best fit for portraying mesoscale features in the SSS and retrieved S fields. The current priority for retrieving S is to improve the reliability of satellite SSS especially at middle and high latitudes, by developing advanced algorithms, combining both sensors, or weighing between accuracy and resolutions.  相似文献   

19.
A method for combined assimilation of climatic hydrologic fields of temperature, salinity, and the climatic dynamic level of the Black Sea into a model of sea dynamics is proposed. The monthly mean fields of the dynamic sea level were obtained from the results of assimilation of satellite altimetry data into the model. The statistical characteristics of errors in the forecasts of the level, salinity, and temperature were assumed to be proportional to the statistical characteristics of the differences between monthly mean climatic fields of temperature, salinity, and sea level calculated by means of assimilating altimetry observations of the sea level and analogous climatic hydrologic fields. The climatic fields of currents are reconstructed and analyzed. The assimilation of the climatic altimetry level allows the reproduction (in current fields) of quasi-stationary synoptic anticyclonic eddies located along the periphery of the Black Sea Rim Current.  相似文献   

20.
An adjoint data assimilation methodology is applied to the Princeton Ocean Model and is evaluated by obtaining “optimal” initial conditions, sea surface forcing conditions, or both for coastal storm surge modelling. By prescribing different error sources and setting the corresponding control variables, we performed several sets of identical twin experiments by assimilating model-generated water levels. The experiment results show that, when the forecasting errors are caused by the initial (or surface boundary) conditions, adjusting initial (or surface boundary) conditions accordingly can significantly improve the storm surge simulation. However, when the forecasting errors are caused by surface boundary (or initial) conditions, data assimilation targeting improving the initial (or surface boundary) conditions is ineffective. When the forecasting errors are caused by both the initial and surface boundary conditions, adjusting both the initial and surface boundary conditions leads to the best results. In practice, we do not know whether the errors are caused by initial conditions or surface boundary conditions, therefore it is better to adjust both initial and surface boundary conditions in adjoint data assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号