首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new water quality index for evaluating the water quality of Jinhae Bay and Gwangyang Bay was developed. Four water quality parameters were selected as water quality indicators for the water quality index: dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), chlorophyll-a (Chl-a), and dissolved oxygen (DO). Reference levels of DIN, DIP, and Chl-a were determined as 6.22 μmol L?1, 0.38 μmol L?1, and 2.32 μmol L?1, respectively, on the basis of a long-term dataset that was collected monthly in the Korea Strait over a period of seven years (2006–2012). The water quality index established for Jinhae Bay and Gwangyang Bay is (bottom DO grade × 0.33) + (surface Chl-a grade × 0.33) + (surface DIN grade × 0.17) + (surface DIP grade × 0.17). On the basis of a three-year observation, the water quality of Jinhae Bay was classified as “good” in winter and spring, “poor” in summer, and “fair” in autumn and exhibited large spatial variation, with the lowest-quality water observed in Masan Bay. The water quality of Gwangyang Bay was classified as “good” in winter, “fair” in spring, “poor” in summer, and “fair” in autumn. Unlike Jinhae Bay, the water quality of Gwangyang Bay exhibited minimal spatial variation. In both bays, water quality among the four seasons was worse during summer. It is essential that a survey for water quality evaluation be conducted during summer.  相似文献   

2.
Biologically important nutrient concentrations in Dokai Bay have declined as a result of reductions in anthropogenic inputs of total nitrogen and total phosphorus. A decrease in nutrient concentrations affects phytoplankton growth, thereby changing the biochemical characteristics of autochthonous particulate matter. We therefore investigated changes in the C/N/P molar ratio of suspended particulate matter (SPM) in the summer, when phytoplankton growth is vigorous, before environmental quality standards (EQSs) were attained (1995–1998) and afterward (2006–2009). We found that the ratio of particulate organic nitrogen (PON) to particulate phosphorus (PP) changed in conjunction with changes in the ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIP) that resulted from reductions in nutrient loading. Furthermore, we suggest that because the DIP concentration in seawater was high before EQSs were attained, inorganic phosphorus was possibly adsorbed onto SPM. After the attainment of EQSs, however, the DIP concentration fell, and PON/PP was high. Phosphorus limitation of phytoplankton growth in the mouth of the bay may explain the high PON/PP ratios after EQS attainment.  相似文献   

3.
We conducted hydrographic observations ten times in the Tsushima Strait to reveal seasonal variations of horizontal material transports such as of heat, freshwater, chlorophyll a, and dissolved inorganic nitrogen (DIN) and phosphorus (DIP) through the eastern channel of the Tsushima Strait (ECTS). The volume, freshwater, and heat transport results are of nearly the same order as results reported in previous studies. The annual mean DIN and DIP transports of 3.59 kmol/s and 0.29 kmol/s are large relative to those of the Changjiang and the Taiwan Strait and are horizontally transported through the ECTS. Nutrient transports are high in July–August and October and low in April and November. Increased nutrient transports in July–August and October are due to the appearance of a cold saline water mass in the bottom layer of the ECTS. Changes in DIN transports in summer and autumn, which account for two-thirds of the total annual DIN transport, would have a large effect on the nitrogen budget and biological productivity in the Tsushima Warm Current region.  相似文献   

4.
近年来快速城镇化和人类活动导致沿海地区营养盐含量显著增加,导致海湾富营养化现象日趋严重。了解水体营养盐含量分布特征与陆源污染之间的关系,是对海湾进行有效环境管理的前提。本研究以2010—2019年福建省厦门湾近岸海域水质监测数据为基础,分析长期性、季节性水质空间分布特征,并利用富营养化指数法对海湾富营养化状态进行评价,为氮、磷污染物治理提供措施建议。结果表明:厦门湾自2013年以来无机氮、无机磷含量波动降低,但同安湾无机磷含量近年来有明显增加。春季和秋季无机氮、无机磷含量明显高于夏季,不同季节氮、磷含量均呈现由湾内向湾外递减的分布趋势,反映出典型的陆源输入特征。硝酸盐氮是厦门湾无机氮的最主要成分,其与无机磷的比值普遍高于Redfield比值。无机氮、无机磷是导致九龙江口、西海域、同安湾富营养化指数较高的主要因子,受径流调控明显,无机磷在秋季还受到沿岸排污口的显著影响。厦门湾亟需加强对所有入海河流氮、磷污染的总量控制,建议强化沿岸排污口的管控。  相似文献   

5.
基于2009年6–9月,2014年5月,2014年7–8月在乳山湾外邻近海域的综合调查资料,分析了该开放海域水体与沉积物中氮、磷营养盐的组成和分布,并在潮汐潮流数值模式计算水通量的基础上分析了近岸开放区域无机氮(DIN)和无机磷(DIP)的循环与收支的主要过程,量化了潮汐潮流、初级生产的消耗与转化、底界面过程与内部循环等过程对氮和磷营养盐循环与收支的影响。结果表明,夏季乳山湾外邻近海域水体DIN和DIP的浓度与分布受陆源输入和潮汐潮流的共同影响,高值均出现在湾口区域;沉积物-水界面存在DIN和DIP从沉积物向上覆水释放的现象,使得底层水体的氮、磷营养盐浓度高于表层水体。氮的收支表明,研究海域水体内部循环过程是初级生产所需DIN的主要来源,占初级生产总消耗量的86%,其次是水交换作用(11%),底界面扩散对初级生产的贡献相对较小(3%);水体DIN的移出主要是通过埋藏、向外海的输送和水体反硝化作用,其比例分别为80%、16%和4%。磷的收支显示,研究海域水体内部循环过程贡献了初级生产所需DIP的91%,其次是水交换作用(9%),底界面扩散对初级生产的贡献小于1%;水体DIP支出主要是通过沉积埋藏和向外海的输送,其比例分别为67%和33%。研究结果表明内部循环过程是近海水体氮和磷获得补充的主要途径,不过外部来源的氮、磷营养盐结构与系统内部具有显著的差异,且系统内磷的埋藏效率要高于氮,其必将对乳山湾外邻近海域营养盐结构和初级生产产生长远的影响。  相似文献   

6.
于1998年10号台风、2000年10号台风碧利斯和2000年6月厦门地区特大暴雨影响期间。在厦门港湾对表层海水溶解无机氮(DIN)、溶解无机磷(DIP)以及盐度、DO、Chla等相关环境因子进行定点连续观测。描述了台风暴雨期间和恢复期DIN、DIP的变化特征。对水动力因素、底质再悬浮、有机物氧化降解及生物活动等因素的影响进行了初步的探讨。  相似文献   

7.
Large amorphous particles (Nuta) observed in coastal areas after phytoplankton blooms and red tide outbreaks were collected by Nuta traps. These particles are always thickly attached to mooring ropes and/or fishing nets. From the decomposition experiments of Nuta and the sinking particles, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) regenerations were active in Nuta, but were not active in sinking particles. In Nuta, regeneration abundances during 10 days were 567 g-N/mg of initial particulate organic nitrogen (PON), and 583 -P/mg of initial particulate phosphorus (PP), respectively. Thus DIP was more regenerated from Nuta than DIN. Ten days integral regeneration abundances of DIN and DIP from Nuta were estimated to be 36% and 79% of in situ DIN and DIP standing stocks, respectively. Nuta contributes an important role of nutrient regeneration particularly DIN, in coastal water. Carbon and nitrogen stable isotope ratios of suspended particles, sinking particles and Nuta indicated that these three different type of particles were almost the same origin, and thus Nuta in the coastal water should be made from phytoplankton debris.  相似文献   

8.
Water and sediment samples were collected at Datong from June 1998 to March 1999 to examine seasonal changes in the transports of nitrogen (N) and phosphorus (P) from the Changjiang River (Yangtze River) to the East China Sea (ECS). Dissolved inorganic nitrogen (DIN; dominated by nitrate) concentration exhibited small seasonality, and DIN flux was largely controlled by water discharge. Dissolved inorganic phosphorus (DIP) concentration was inversely correlated with water discharge, and DIP was evenly delivered throughout a year. The transports of DIN and DIP from the Changjiang River were consistent with seasonal changes in nutrient distributions and P limitation in the Changjiang Estuary and the adjacent ECS. Dissolved organic and particulate N (DON and PN) and P (DOP and PP) varied parallel to water discharge, and were dominantly transported during a summer flood. The fluxes of DOP and particulate bioavailable P (PBAP) were 2.5 and 4 times that of DIP during this period, respectively. PBAP accounted for 12–16% of total particulate P (PP), and was positively correlated with the summation of adsorbed P, Al–P and Fe–P. Ca–P, the major fraction of PP, increased with increasing percent of CaCO3. The remobilization of riverine DOP and PBAP likely accounted for the summer elevated primary production in DIP-depleted waters in the Changjiang Estuary and the adjacent ECS. The Changjiang River delivered approximately 6% of DIN (1459 × 106 kg), 1% of DIP (12 × 106 kg), and 2% of dissolved organic and particulate N and P to the totals of global rivers. The construction of the Three Gorges Dam might have substantially reduced the particulate nutrient loads, thereby augmenting P limitation in the Changjiang Estuary and ECS.  相似文献   

9.
Seasonal variations in freshwater, salt, phosphorus and nitrogen budgets of Hakata Bay, Japan were investigated from April 1993 until March 1994. The internal sink of dissolved inorganic phosphorus (DIP) and nitrogen (DIN), and the internal source of dissolved organic phosphorus (DOP) and nitrogen (DON) predominate in the bay. This means that the production of organic matter is larger than respiration, and atmospheric CO2 is absorbed in the water column of Hakata Bay. Denitrification is more dominant than nitrogen fixation in the bay. Compared to Tokyo and Mikawa Bays, Hakata Bay is harder to eutrophicate, mainly due to the shorter residence time of freshwater.  相似文献   

10.
The phosphorus cycle is studied during 2013–2014 in the Sanggou Bay(SGB), which is a typical aquaculture area in northern China. The forms of measured phosphorus include dissolved inorganic phosphorus(DIP), dissolved organic phosphorus(DOP), particulate inorganic phosphorus(PIP), and particulate organic phosphorus(POP).DIP and PIP are the major forms of total dissolved phosphorus(TDP) and total particulate phosphorus(TPP),representing 51%–75% and 53%–80%, respectively. The concentrations and distributions of phosphorus forms vary among seasons relative to aquaculture cycles, fluvial input, and hydrodynamic conditions. In autumn the concentration of DIP is significantly higher than in other seasons(P0.01), and higher concentrations are found in the west of the bay. In winter and spring the phosphorus concentrations are higher in the east of the bay than in the west. In summer, the distributions of phosphorus forms are uniform. A preliminary phosphorus budget is developed, and shows that SGB is a net sink of phosphorus. A total of 1.80×10~7 mol/a phosphorus is transported into the bay. The Yellow Sea is the major source of net input of phosphorus(61%), followed by submarine groundwater discharge(SGD)(27%), river input(11%), and atmospheric deposition(1%). The main phosphorus sink is the harvest of seaweeds(Saccharina japonica and Gracilaria lemaneiformis), bivalves(Chlamys farreri),and oysters(Crassostrea gigas), accounting for a total of 1.12×10~7 mol/a. Burial of phosphorus in sediment is another important sink, accounting for 7.00×10~6 mol/a. Biodeposition by bivalves is the major source of phosphorus in sediment, accounting for 54% of the total.  相似文献   

11.
Phosphorus dynamics in Tokyo Bay waters were investigated along with other oceanographic variables. Seasonal variations of dissolved inorganic phosphorus (DIP) and particulate phosphorus (PP) are inversely correlated with each other, and reflect variation in biological activity. A high concentration of PP in summer surface waters is caused by high primary production. The PP settled in the deeper layer is decomposed, and orthophosphate is regenerated within the water column and in sediments. Even during summer stratification period, the regenerated orthophosphate is occasionally advected upward by wind-induced water mixing and contributes to phytoplankton growth in the upper layer. Some dissolved organic phosphorus is producedin situ from PP, but it may be rapidly decomposed in the water column. The ratios of Cchlorophylla and CN in particulate matter suggest that phytoplankton in the summer surface waters of Tokyo Bay are limited neither by nitrogen nor by phosphorus. The PN ratio in particulate matter varies substantially but it is positively correlated with the ambient concentration of DIP. Phytoplankton take up and store phosphorus within their cells when ambient DIP exceeds their demand. An abundance of total phosphorus in the summer water column can be attributed to increased discharge of river waters, although enhanced release of orthophosphate from anoxic sediments cannot be discounted.  相似文献   

12.
Based on a hydrodynamic-ecological model, the temperature, salinity, current, phytoplankton(Chl a),zooplankton, and nutrient(dissolved inorganic nitrogen, DIN, and dissolved inorganic phosphorous, DIP)distributions in the Beibu Gulf were simulated and the nutrient budget of 2015 was quantitatively analyzed. The simulated results show that interface processes and monsoons significantly influence the ecological processes in the gulf. The concentrations of DIN, DIP, phytoplankton and zooplankton are generally higher in the eastern and northern gulf than that in the western and southern gulf. The key regions affected by ecological processes are the Qiongzhou Strait in winter and autumn and the estuaries along the Guangxi coast and the Red River in summer.In most of the studied domains, biochemical processes contribute more to the nutrient budget than do physical processes, and the DIN and DIP increase over the year. Phytoplankton plays an important role in the nutrient budget; phytoplankton photosynthetic uptake is the nutrient sink, phytoplankton dead cellular release is the largest source of DIN, and phytoplankton respiration is the largest source of DIP. The nutrient flux in the connected sections of the Beibu Gulf and open South China Sea(SCS) inflows from the east and outflows to the south. There are 113 709 t of DIN and 5 277 t of DIP imported from the open SCS to the gulf year-around.  相似文献   

13.
三沙湾的水质状况   总被引:11,自引:0,他引:11  
本文根据1999年9月~2000年8月福建三沙湾水质监测资料,对该湾海水理化要素测值的变化特征进行了分析;并以DIN、PO4^-P、COD为富营养化评价指标,用营养状态指数评价该湾水体的营养状态.以水质综合评价指数对该湾的水质状况进行了评价.结果表明,湾内水体氮、磷含量较高,且至夏、冬季的高于春、秋季;夏、冬季所有测站与秋季部分测站水体呈富营养化状态。  相似文献   

14.
夏季辽河口各形态营养盐的河口混合行为   总被引:6,自引:0,他引:6  
利用2009 年7 月对辽河口水域航次的调查结果, 对该水域营养盐的形态和分布特征进行了探讨,并对其主要控制过程进行了讨论。结果表明: 辽河口水域营养盐的变化范围较大。磷主要以磷酸盐的形式存在, 其余依次是颗粒态磷PP、溶解有机磷DOP, 三者含量相差不大; 氮主要以硝酸盐的形式存在, 其余依次是溶解有机氮DON、颗粒...  相似文献   

15.
We have studied nitrogen and phosphorus distributions across the thermohaline front in Kii Channel in winter by using engine-cooling sea water of a ferry boat. On Dec. 1986 and Jan. 1987, differences of PO4–P and DIN across the front are recognized. Especially in the latter case, differences of nutrients concentrations across the front are very obvious. But differences of nutrients across the front on Feb. 1986, Feb. and Mar. 1987 are not obvious. Inspite of winter,Akashiwo had happened in Osaka Bay, nutrients mostly have already been utilized by phytoplankton in inner part of Osaka Bay. Consequently, differences of nutrients concentrations across the front are nearly zero.  相似文献   

16.
文章利用2017年11月(秋季)和2018年4月(春季)对惠州考洲洋海域开展的两个航次水环境调查数据,分析了考洲洋海域表层溶解氧(DO)、化学需氧量(COD)、无机氮(DIN)、无机磷(DIP)和石油类(OIL)等典型水质因子的水平分布和季节变化情况。结果表明,秋季溶解氧、化学需氧量、石油类分别在盐洲岛以东附近海域、考洲洋湾顶海域和盐洲岛东南海域出现高值区,而无机氮在整个考洲洋无明显区域分布差异,无机磷含量呈现考洲洋内湾到湾口逐渐递减的趋势;春季化学需氧量、无机磷均在考洲洋湾顶出现高值区域,无机氮在盐洲岛以东附近海域出现高值区,而溶解氧和石油类无明显变化。从季节变化来看,秋季考洲洋海域溶解氧、化学需氧量和石油类平均含量均比春季高;无机氮、无机磷则相反,平均含量秋季低于春季。同时,文章还分别利用单因子和综合因子方法对海水有机污染状况进行评价并对其进行比较分析,结果表明,有机污染评价指数法可充分考虑多种水质因子,更适合对考洲洋水环境质量进行评价,得到较为客观的综合评价结果。  相似文献   

17.
渤海海峡悬浮体分布、通量及其季节变化   总被引:1,自引:0,他引:1       下载免费PDF全文
渤海海峡是渤黄海物质交换的重要通道,同时也是黄河入海泥沙向黄海搬运的必经路径。本文以2006—2009年渤海海峡8个站位四个季节的悬浮体、CTD数据为基础,将标准层悬浮体浓度数据与浊度数据对比获得高垂直分辨率的悬浮体浓度数据,分析其季节变化特征,并结合日均风场驱动的高精度数值模型模拟的渤海海峡流场,计算了四个季节渤海海峡悬浮体通量。结果表明,北黄海冷水团的入侵和退缩是渤海海峡温盐及其季节变化的重要特征之一,四季节流场特征均为"北进南出";渤海海峡中上层悬浮体浓度分布为海峡南部浓度高、北部浓度低,夏季海峡北部下层北黄海冷水团控制海域悬浮体浓度高于周围水体。春季、夏季、秋季、冬季悬浮体浓度依次增高。观测期间渤海海峡悬浮体的年净通量约为251.63万吨,其中输往黄海方向的悬浮体通量约占黄河年平均输沙量的4.27%。  相似文献   

18.
基于赤潮灾害风险评估理论和海坛海峡的浮游生物与水文常规监测数据, 采用层次分析法(AHP, Analytic Hierarchy Process)构建了海坛海峡赤潮灾害风险评估指标体系, 运用熵值法与变异系数法组合赋予权重, 建立了较为合理可信的评估模型, 并初步给出了海坛海峡赤潮灾害生态风险等级区划图。结果表明: 春季, 中级-较高级风险区主要分布在海峡北部, 海峡南部主要为低风险等级; 夏季, 较高级风险区存在于南部, 绝大部分海区属低风险海域; 秋季, 以低中风险等级为主, 中级风险区主要分布在海峡的西北部与东南部; 冬季, 较高级与高级风险海域位于海峡的西北部和东北部。研究海域的富营养化程度较高, 且富营养化指数权重较大, 减少氮磷入海可降低致灾、孕灾危险度, 进而能够降低赤潮灾害发生的风险。通过多年的赤潮事件结合验证表明, 赤潮发生的时空特征与致灾危险度分布具有较好的关联性。  相似文献   

19.
Changes in the biomass and species composition of phytoplankton may reflect major shifts in environmental conditions. We investigated relationships between the late summer biomass of different phytoplankton taxa and environmental factors, and their long-term (1979–2003) trends in two areas of the Baltic Sea, the northern Baltic proper (NBP) and the Gulf of Finland (GF), with statistical analyses. An increasing trend was found in late summer temperature and chlorophyll a of the surface water layer (0–10 m) in both areas. There was also a significant decrease in summer salinity and an increase in winter dissolved inorganic nitrogen to phosphorus (DIN:DIP) ratio in the NBP, as well as increases in winter DIN concentrations and DIN:SiO4 ratio in the GF. Simultaneously, the biomass of chrysophytes and chlorophytes increased in both areas. In the NBP, also the biomass of dinophytes increased and that of euglenophytes decreased, whereas in the GF, cyanobacteria increased and cryptophytes decreased. Redundancy analysis (RDA) indicated that summer temperature and winter DIN concentration were the most important factors with respect to changes in the phytoplankton community structure. Thus, the phytoplankton communities seem to reflect both hydrographic changes and the ongoing eutrophication process in the northern Baltic Sea.  相似文献   

20.
根据南海温、盐度历史观测数据的季平均值和季平均风应力场,采用三维非线性海流诊断模式,对南海大陆架外深水海区四季平均流场进行了数值模拟计算。所得的南海四季环流总趋势以及一些中小尺度的涡旋现象,同已有的一些研究结果基本相符。此外,还较好地反映了南海海流的季节变化特征和流场在不同深度的分布特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号