首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the present study, the ecosystem-based water quality model was applied to the Pearl River (Zhujiang) Estuary. The model results successfully represent the distribution trend of nutrients and dissolved oxygen both in the horizontal and vertical planes during the flood season, and it shows that the model has taken into consideration the key part of the dynamical, chemical and biological processes existing in the Zhujiang Estuary. The further studies illustrate that nitrogen is in plenty while phosphorus and light limit the phytoplankton biomass in the Zhujiang Estuary during the flood season.  相似文献   

2.
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.  相似文献   

3.
A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.  相似文献   

4.
Four cruises were conducted during 2002--2003 in the Changjiang Estuary and adjacent coastal areas. The data presented show a clear coast to open sea gradient in nutrients related to the river inputs. Maximum values of chlorophyll a were typically observed at intermediate salinities at surface water and coincided with non-conservative decreases in nutrients along the salinity gradient, indicating that removal of nutrients was related to phytoplankton uptake. The seasonal variations of nutrient concentrations were just opposite to those of chlorophyll a, indicating that the seasonal variations of nutrients were mainly controlled by phytoplankton uptake, whereas riverine inputs merely weakened or balanced its extent. During the estuarine mixing, phosphate demonstrated some remobilization during all the four cruises; whereas both conservative and non-conservative behaviors for dissolved inorganic nitrogen and silicate were observed in the study area, indicating that both biotic and abiotic events may affect their behaviors during the estuarine mixing. Under the influence of freshwater inputs with high value of ratio of nitrogen to phosphorus, the estuarine and coastal waters impacted by the Changjiang plume were high ( 〉 30) in ratio of nitrogen to phosphorus, but rates of primary production were apparently not constrained by any kind of nutrient elements. However, the low ( 〈 1 ) ratio of silicate to nitrogen in most of the study area might be linked with the rapidly increasing frequency of harmful algal bloom (HAB) incidents in recent years in the coastal waters impacted by the Changjiang plume.  相似文献   

5.
Based on the recent research results on dry and wet deposition of nutrient elements and sulphate,we estimate the atmospheric flux of nutrient elements and sulphate to the southern Yellow Sea and the East China Sea in each season.The results suggest that the concentrations of nutrient elements and sulphate in aerosol and precipitation show an apparent seasonal cycle with the maximum values in winter and the minimum values in summer.Depositions of nitrate and sulphate are dominated by wet deposition,while the deposition for phosphate is mainly dry deposition.Moreover,compared with the riverine inputs,the atmospheric deposition may be the main source of dissolved inorganic nutrients in the southern Yellow Sea and the East China Sea.  相似文献   

6.
The phosphorus cycle is studied during 2013–2014 in the Sanggou Bay(SGB), which is a typical aquaculture area in northern China. The forms of measured phosphorus include dissolved inorganic phosphorus(DIP), dissolved organic phosphorus(DOP), particulate inorganic phosphorus(PIP), and particulate organic phosphorus(POP).DIP and PIP are the major forms of total dissolved phosphorus(TDP) and total particulate phosphorus(TPP),representing 51%–75% and 53%–80%, respectively. The concentrations and distributions of phosphorus forms vary among seasons relative to aquaculture cycles, fluvial input, and hydrodynamic conditions. In autumn the concentration of DIP is significantly higher than in other seasons(P0.01), and higher concentrations are found in the west of the bay. In winter and spring the phosphorus concentrations are higher in the east of the bay than in the west. In summer, the distributions of phosphorus forms are uniform. A preliminary phosphorus budget is developed, and shows that SGB is a net sink of phosphorus. A total of 1.80×10~7 mol/a phosphorus is transported into the bay. The Yellow Sea is the major source of net input of phosphorus(61%), followed by submarine groundwater discharge(SGD)(27%), river input(11%), and atmospheric deposition(1%). The main phosphorus sink is the harvest of seaweeds(Saccharina japonica and Gracilaria lemaneiformis), bivalves(Chlamys farreri),and oysters(Crassostrea gigas), accounting for a total of 1.12×10~7 mol/a. Burial of phosphorus in sediment is another important sink, accounting for 7.00×10~6 mol/a. Biodeposition by bivalves is the major source of phosphorus in sediment, accounting for 54% of the total.  相似文献   

7.
Bacterial abundance, phytoplankton community structure and environmental parameters were investigated to study the relationships between bacteria and phytoplankton during giant jellyfish Nemopilema nomurai blooms in the central Yellow Sea during 2013. N. nomurai appeared in June, increased in August, reached a peak and began to degrade in September 2013. Results showed that phosphate was possible a key nutrient for both phytoplankton and bacteria in June, but it changed to nitrate in August and September. Phytoplankton composition significantly changed that pico-phytoplankton relative biomass significantly increased, whereas other size phytoplankton significantly decreased during jellyfish bloom. In June, a significantly positive correlation was observed between chlorophyll a concentration and bacterial abundance(r=0.67, P0.001, n=34).During jellyfish outbreak in August, there was no significant correlation between phytoplankton and bacteria(r=0.11, P0.05, n=25), but the relationship(r=0.71, P0.001, n=31) was rebuilt with jellyfish degradation in September. In August, small size phytoplankton occupied the mixed layer in offshore stations, while bacteria almost distributed evenly in vertical. Chlorophyll a concentration significantly increased from(0.42±0.056) μg/L in June to(0.74±0.174) μg/L in August, while bacterial abundance just slightly increased. Additionally, the negative net community production indicated that community respiration was not entirely determined by the local primary productivity in August. These results indicated that jellyfish blooms potentially affect coupling of phytoplankton and bacteria in marine ecosystems.  相似文献   

8.
Using conductivity-Temperature-depth data of a recent cruise during July 22-28, 2008 and historical data, it is found that temperature inversions occur from time to time in the Huanghai Sea(Yellow Sea) cold water mass (HSCWM) in summer. The temperature inversions are produced by the movement of the fresh and cold HSCWM masses above the warm and saline Huanghai Sea Warm Current water at the central bottom of the Huanghai Sea Trough. The non-homogeneous profiles of the temperature and the salinity suggest that vertical mixing in the HSCWM, which is of great importance to the circulation in the Huanghai Sea in summer, is weak. Trajectories of satellite-tracked surface drifters suggest that waters in the northern reach of the Huanghai Sea move southward along the 40-50 m isobaths and descend into the southern Huanghai Sea to form the western core of the HSCWM.  相似文献   

9.
The Zhelin Bay is one of the most important bays for large-scale mariculture in Guangdong Province, China. Owing to the increasing human population and the expanding mariculture in the last two decades, the ecological environment has greatly changed with frequent harmful algal blooms. A monthly survey of water content, organic matter (TOM), and various forms of nitrogen and phosphorous in sediment from July 2002 to July 2003 in the bay was conducted. The results showed that the water content was correlated significantly with TOM and various forms of nitrogen and phosphorus and can be used as proxy for quick and rough estimate of these factors in the future surveys. TOM was also correlated significantly with various forms of nitrogen and phosphorus, indicating that it was one of the key factors affecting the concentrations and distributions of nitrogen and phosphorus in the investigated waters. Average total Kjeldhal nitrogen (TkN) content was( 1 113.1 ± 382.5)μg/g and average total phosphorus (TP) content was(567.2± 223.3)μg/g, and both were much higher than those of similar estuaries in China and elsewhere. Average nitrogen and phosphorus tended to be higher inside than outside the bay, higher at aquaculture than non-aquaculture areas, and higher at fish-cage culture than oyster culture areas, suggesting that large-scale mariculture inside the bay played an important role in the eutrophication of the Zhelin Bay. Various forms of nitrogen and phosphorus concentrations were higher during the warm season (July--September), which was due to the increased decomposition and concentration of organic matter resulted from the fast growth and high mortality of the cultured species. Compared with July 2002, TkN and TP contents were much higher in July 2003, in consonance with the eutrophication of the Zhelin Bay. Because exchangeable phosphorus (Ex-P), iron-bounded phos- phorus (Fe-P) and organic phosphorus (OP) combined accounted for 34.3% of the TP and authigenic phosphorus (Au-P  相似文献   

10.
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×10~3 to 269.78×10~3 cell/L with an average of 41.80×10~3 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×10~3 cell/L with the range of 1.78×10~3 to 574.96×10~3 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis(RDA) showed that turbidity,temperature, salinity, pH, dissolved oxygen(DO), the ratio of dissolved inorganic nitrogen to silicate and SiO_4-Si(DIN/SiO_4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.  相似文献   

11.
从上行控制角度,通过野外采样和围隔培养实验,研究了水母的代谢及分解过程对水体环境中pH、溶解氧、营养盐组成的影响,以及该过程中浮游植物的变化。实验结果表明,沙海蜇在代谢过程中短时间内会大量消耗水体中的溶解氧(dissolved oxygen,DO),使水体出现低氧和轻度酸化。代谢过程释放出大量营养盐,使水体中的溶解无机氮(dissolved inorganic nitrogen,DIN)浓度在24h内增加为原来的12倍,溶解无机磷(dissolved inorganic phosphorus,DIP)浓度增加了40多倍,进而引起水体中叶绿素a(chlorophyll a,chl a)浓度的增加。沙海蜇的分解过程使水体表现出明显的低氧(缺氧)和酸化现象。沙海蜇生物量越大,分解时间越长,对水体的改变程度越明显,此外,还释放出大量的营养盐并改变原有的营养盐结构,可以刺激甲藻和绿藻的生长,甚至可能引发藻华。  相似文献   

12.
赵亮  李夏  张芳 《海洋与湖沼》2016,47(3):564-571
近十年来,我国黄、东海沙海蜇的数量呈上下波动趋势,除2008、2010、2011、2013年为不暴发年外,其余年份均为暴发年或弱暴发年(本文界定沙海蜇平均丰度范围为2—10ind./100m2为暴发年,1—2ind./100m2为弱暴发年,0—1ind./100m2为不暴发年)。为研究沙海蜇数量年际变化的原因,本文借助同化的海洋模式结果,分析了2006—2013年南黄海沙海蜇平均丰度与表底层海水温度的关系、与不同温度持续时间的关系。研究结果发现,在海州湾附近,对于暴发年2007年和2009年,春季底层海水10—18°C持续时间为130天,比不暴发年2010年和2011年多近15天。在长江口区域,不暴发年2008年和2011年夏秋季底层海水18—25°C持续时间较长,约80天,比暴发年2007年多20天。在长江口、苏北近岸以及海州湾区域,春季底层海水10—18°C持续时间越长,南黄海水母丰度呈现越大的趋势;夏秋季底层海水18—25°C持续时间越长,第二年水母生物量则越大。结果支持和验证了春季底层10—18°C持续时间长有利于当年水母暴发及夏秋季底层18—25°C持续时间长有利于来年水母暴发的推论。本文通过分析沙海蜇丰度和温度变化的关系,可以为将来预测该水母数量提供基础。  相似文献   

13.
2018年6月渤海大型水母分布特征   总被引:3,自引:0,他引:3  
2018年6月使用渔业底拖网采样,对渤海大型水母进行了全面调查,调查船舶为"中渔科102"渔业科考船。本研究分析了渤海大型水母的种类组成、渔获密度与伞径大小,并对其源地进行了探讨。结果表明:本次调查共采集到海月水母、沙海蜇、海蜇、多管水母四种大型水母,其中海蜇、多管水母数量较少,各采集到一只。海月水母在渤海三湾均有分布,各海区伞径大小无显著差异且多为幼体(<10cm),密度高值区出现在渤海湾东南侧海域,可达38-221.21ind./(net·h),辽东湾海月水母出现于湾南,密度<5ind./(net·h),湾北未见;作者推测,海月水母在渤海沿岸可能存在多个源头,诸如:莱州湾与渤海湾交界近岸海域、河北近岸、辽东湾大连近岸以及北部近岸。沙海蜇在渤海分布较广,辽东湾为密度高值区,均值为(35.32±21.64)ind./(net·h),但伞径较小,均值为(12.15±6.52)cm;与此相对,渤海湾与莱州湾外侧海域沙海蜇密度虽小[<20ind./(net·h)],但伞径要显著大于辽东湾,最大伞径均值可达(33.86±7.40)cm;作者推测,沙海蜇在渤海海域发源地主要集中于辽东湾近岸,渤海湾与莱州湾,外海出现的沙海蜇可能源于辽东湾,随海流运输至此。海月水母、沙海蜇在渤海发生时间要晚于黄、东海。本研究结果可为深入分析渤海大型水母的种群动态变化、暴发机理提供基础。  相似文献   

14.
左涛  王俊  吴强  袁伟  栾青杉 《海洋与湖沼》2016,47(1):195-204
2015年5月搭载“北斗”渔业调查船、使用渔拖网的采样方式,在整个黄海及东海北部进行系统的走航式大面调查,记录了30°N—39°N海区内的大型水母种类组成、伞径大小及生物量分布,估算和比较了大型水母与其他渔业生物的生物量。结果表明,5月整个调查区,大型水母的总生物量估算值5.9万t,绝大部分由黄海中部的多管水母和洋须水母生物量贡献所致。出现的大型水母种类伞径分布呈单峰型。不同种类的水母分布具有明显地理区域和水文偏好性。其中,洋须水母主要分布于黄海中、北部50m水深以深水域,多管水母主要分布于黄海中部50m水深以浅的西侧以及整个东海北部;沙海蜇多为幼体,分布于黄、东海交汇区31°N—33°N间;霞水母较为集中出现于31°N以南、123°N以西近海。各水母种类的高密区的底层水温按洋须水母、沙海蜇、四叶小舌水母、霞水母呈升高趋势。东海多管水母分布区的底层水温与沙海蜇相近;黄海多管水母分布区的底层水温较洋须水母略高。沙海蜇和四叶小舌水母较其他水母的适温范围宽。霞水母和洋须水母处于相对高盐区域。  相似文献   

15.
通过2009-2011年5月下旬-7月下旬辽东湾北部近海10m等深线内的大型水母调查数据,分析了辽东湾北部近海近三年中大型水母资源状况,并探讨了辽东湾大型水母的生态类型。结果显示:辽东湾北部近海大型水母种类主要有海蜇(Rhopilema esculentum)、沙蜇(Nemopilema nomurai)、白色霞水母(Cyanea nozakii)、海月水母(Aurelia sp.1),海蜇和沙蜇是优势种。海蜇幼水母阶段主要集中分布在5m等深线以内的近岸河口水域,随着个体增大有略向深水或密度较小的水域扩散的趋势,仍主要分布在5m等深线两侧水域,属于高温低盐种类。6月份调查海区中发现大量的沙蜇幼水母,随着沙蜇个体增大,7月份调查海区中沙蜇数量大幅度减少。辽东湾海月水母在南部海域出现较多,2010、2011年在北部近海部分海域出现。白色霞水母近几年来辽东湾出现较少,栖息在盐度较高的水域。辽东湾各种大型水母中,沙蜇的生长速度最快。辽东湾海蜇幼水母、沙蜇幼水母的海区出现时间要晚于黄、东海。  相似文献   

16.
Giant jellyfish (Nemopilema nomurai) outbreaks in relation to satellite sea surface temperature (SST) and chlorophyll-a concentrations (Chl-a) were investigated in the Yellow Sea and East China Sea (YECS) from 1998 to 2010. Temperature, eutrophication, and match–mismatch hypotheses were examined to explain long-term increases and recent reductions of N. nomurai outbreaks. We focused on the timing of SST reaching 15 °C, a critical temperature enabling polyps to induce strobilation and enabling released ephyra to grow. We analyzed the relationship of the timing with interannual variability of SST, Chl-a, and the timing of phytoplankton blooms. Different environmental characteristics among pre-jellyfish years (1998–2001), jellyfish years (2002–2007, 2009), and non-jellyfish years (2008, 2010) were assessed on this basis. The SST during late spring and early summer increased significantly from 1985 to 2007. This indicated that high SST is beneficial to the long-term increases in jellyfish outbreaks. SST was significantly lower in non-jellyfish years than in jellyfish years, suggesting that low SST might reduce the proliferation of N. nomurai. We identified three (winter, spring, and summer) major phytoplankton bloom regions and one summer decline region. Both Chl-a during non-blooming periods and the peak increased significantly from 1998 to 2010 in most of the YECS. This result indicates that eutrophication is beneficial to the long-term increases in jellyfish outbreaks. Timing of phytoplankton blooms varied interannually and spatially, and their match and mismatch to the timing of SST reaching 15 °C did not correspond to long-term increases in N. nomurai outbreaks and the recent absence.  相似文献   

17.
Nemopilema nomurai, an endemic and blooming jellyfish species in the waters of Korea, China and Japan, were monitored from June to October, 2017, in the Bohai and northwestern Yellow Seas, using the ship sighting method, as a preliminary study to investigate the spatiotemporal distribution of medusae. Monitoring revealed that the mass appearance of young medusae was observed in Liaodong Bay in summer. In late summer they disappeared and a high density zone shifted to the mid- and northern Bohai Strait. In early fall, healthy adults with relatively high density were observed in the area around the border of the South and North Yellow Seas. These results suggest that medusae of N. nomurai originated from the Bohai Sea and were advected into the Yellow Sea through the Bohai Strait.  相似文献   

18.
Nemopilema nomurai jellyfish, which are believed to complete their development in the East China Sea, have started migrating into the Yellow Sea in recent years. We obtained biomass estimates of this species in the Yellow Sea using bottom trawl fishing gear and sighting surveys over a 5-year period. These methods are effective for obtaining N. nomurai jellyfish density estimates and information about the community distribution near the bottom or surface of the sea. To verify the vertical distributions of giant jellyfish between, we used hydroacoustic equipment, including an optical stereo camera system attached to a towed sledge and an echo counting method with scientific echosounder system. Acoustic and optical data were collected while the vessel moved at 3 knots, from which the distribution and density of N. nomurai jellyfish were analyzed. Subsequently, the camera system was towed from a 7 m mean depth to sea level, with the detection range of the acoustic system extending from an 8 m depth to the bottom surface. The optical and acoustic methods indicated the presence of vertical distribution of 0.113 (inds/m3) and 0.064 (inds/m3), respectively. However, the vertical distribution indicated that around 93% of individuals occurred at a depth range of 10–40 m; thus, a 2.4-fold greater density was estimated by acoustic echo counting compared to the optical method.  相似文献   

19.
在实验室内模拟研究了沙海蜇消亡过程中氮与磷的释放特征。模拟结果表明:沙海蜇消亡过程中向水体释放氮、磷可分为两个阶段,且氮的释放速率比磷高一个数量级。在沙海蜇消亡的初期阶段,水体中溶解态氮、磷和总氮、总磷的浓度迅速增高,氮可以达到其消亡过程中的最高浓度;在后期阶段,水体中溶解态氮和总氮的浓度不断下降,但水体中的磷在这一阶段达到消亡过程中的最高浓度碱性条件有利于氮的释放,酸性条件有利于磷的释放;盐度越高氮与磷的释放速率越小;温度对氮、磷的释放影响不大;水体中氮与磷含量越高,沙海蜇消亡的速度越慢,而且氮的浓度越高,氮与磷释放到水体中的速率就越慢。  相似文献   

20.
青岛外海夏季水母路径溯源研究   总被引:6,自引:4,他引:2  
张海彦  赵亮  魏皓 《海洋与湖沼》2012,43(3):662-668
2011年夏季,青岛外海发现大量大型水母,如沙海蜇、海月水母和白色霞水母等,而在冬、春季未在当地海区发现其幼体。本文采用拉格朗日方法,以粒子代表水母,不考虑水母自身运动,进行反向追踪,追溯其运动路径及可能源地。不同追踪实验结果显示,在不同时间不同深度处释放的粒子路径不同。在海面处释放的粒子分别可以追溯到海州湾、江苏沿岸及长江口附近的海域,其中8月1日和8月15日在海面释放的粒子最远可以追溯至长江口外海域;2m层上释放的粒子最远也可到达长江口附近,而10m层以深释放的粒子基本分布在35°N以北。由于反向追踪只考虑海流的影响,追踪过程可逆,因此,从运动路径来看,青岛外海的部分水母可能来源于海州湾、江苏沿岸及长江口附近海域。从水母种类分布特征来看,海州湾、江苏沿岸及长江口附近海域在有粒子分布时期的水母种类与7、8月份青岛外海部分水母种类一致,为寻找青岛外海夏季水母的潜在的来源地提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号