首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 190 毫秒
1.
海上风力发电单立柱支撑结构拟静力分析   总被引:1,自引:0,他引:1  
海上风电支撑结构不同于一般海洋结构物,它受到复杂的风机气动荷载、机械控制荷载和海洋环境荷载的多重作用。文章针对海上某单立柱风电支撑结构,通过分析其结构固有频率的约束限制以及外环境荷载的动力特性,综合考虑外环境荷载尤其是风机荷载的动力放大影响,给出海上单立柱风电支撑结构的拟静力分析思路。并进行极端及操作工况下支撑结构在风、浪、流环境荷载组合作用的应力计算和强度分析。提出该种结构在使用现有海洋结构物设计规范和风机设计规范时的注意事项。该分析比较结果及结论可作为海上类似风电支撑结构的设计参考。  相似文献   

2.
李炜 《海洋工程》2012,30(1):145-150
针对海上风电负压桶型基础,以提高桶基水平承载性能和降低结构动力响应为目的,提出了一种加装稳定翼的负压桶型基础型式。通过在桶身设置一组稳定翼,使得桶周土抗力得以充分利用。以单立柱负压桶基为例,建立桶土全实体有限元模型,进行了静力分析和包括模态分析、瞬态分析、谱分析在内的动力分析。结果表明:稳定翼的设置增强了桶基水平承载性能;水平位移和动力响应显著减小;结构低阶固有频率略有提高。  相似文献   

3.
以一6.7 MW风机为研究对象,提出了一种适用于30~50 m水深的海上风电倒Y形导管架筒型基础结构型式,采用三维精细有限元模型对结构的受力特性展开研究,包括结构的自振特性以及在随机风浪流荷载作用下的动力响应。研究结果表明,倒Y形导管架筒型基础采用“三腿变六腿”导管架的结构型式,能够更加有效的将上部荷载传递至下部筒型基础,具有较好的受力特性和传力体系;整机结构的前两阶自振频率均在风机允许运行的频率范围内;在50年一遇极端随机风浪流荷载作用下,整机结构的位移响应和应力响应,均可满足结构安全使用要求。  相似文献   

4.
海上风电工程主要受到风、波浪及洋流等产生的水平循环荷载作用,本文研究楔形单桩基础在水平循环荷载作用下的变形规律,并探讨不同循环荷载对变形规律产生的影响,以确保风电设施正常运行。通过数值模拟建立海上风电单桩-海床模型,考虑土体超孔隙水压力的演变规律及土体致密规律,土体采用UBC3D-PLM本构模型。本文重点讨论并分析在不同水平循环荷载作用下楔形单桩基础与等截面单桩基础的桩周土体位移、塑性应变及桩基累计转角位移之间的差异。研究结果表明:楔形结构会降低桩周土体位移及塑性应变,使得楔形单桩基础旋转中心位置更低,产生倾覆的可能更小,当循环荷载比为0.7时,累计转角位移能减少41.86%;循环荷载越大,楔形单桩基础水平受荷特性越好,累计位移减少量的增长率越高。研究成果可为今后海上风电基础的选择与设计提供参考。  相似文献   

5.
针对海上风电整机系统,建立了一体化流固耦合分析方法。在模拟过程中,采用浸入边界法解决风机叶片旋转引起的静动干涉问题,利用改进的守恒式 level set(简称 ICLS)方法捕捉海浪自由面,并使用交错迭代法求解流固耦合方程。通过构建 “风机—塔架—基础”一体化流固耦合数值模拟方法,能够在一次仿真计算中实现海上风电整机系统的全过程数值模拟,准确求解多荷载耦合作用下“风机—塔架—基础”的整体结构动力响应。以某单桩式海上风电工程为例,验证了本方法能够实现对海上风电整体系统的一体化分析。  相似文献   

6.
文章从桩基—土体相互作用与传统桩基冲刷两个方面对国内外复杂动力环境下海上风电单桩基础冲刷相关研究进行了系统的回顾与分析,总结了这两个方面研究中各自存在的不足。为了使研究成果更贴近工程实际,建议该领域未来的研究中应同时考虑传统冲刷研究中的水动力荷载与桩基在复杂荷载作用下的循环振动响应,深入探究冲刷过程对风机单桩基础结构动力特性的影响,揭示复杂荷载动力条件下风机单桩基础附近的冲刷机理,进一步优化现有冲刷防护设计。  相似文献   

7.
单桩基础是海上风电场的一种重要基础形式。海上风电场单桩基础首先需要承担上部结构传递的竖向荷载,然后还需要承受波浪、海流、地震等作用下的水平荷载,而既有竖向荷载对单桩的水平承载特性会产生重要影响。本文阐述了既有竖向荷载对单桩水平承载特性影响的研究进展。通过对比不同学者的研究成果,分析了既有竖向荷载对单桩水平承载力特性的影响规律、影响原因及影响因素。针对目前国内外学者对该问题研究的不足,提出了若干思考和展望,认为有必要进行影响因素分析和水平循环荷载影响的探究。  相似文献   

8.
王涛  张琪  叶冠林 《海洋工程》2022,40(1):93-103
大直径单桩基础是海上风电应用广泛的一种基础形式,严格控制桩基泥面处的位移是保证基础稳定和风机安全运营的关键因素.通过数值方法建立了单桩—海床的三维模型,将可以描述海洋砂土超固结性和结构性的弹塑性本构模型通过UMAT子程序嵌入有限元软件ABAQUS中,桩基承受的波浪荷载通过Morison方程进行计算模拟.针对无波浪荷载、仅作用于海床的波浪荷载、同时作用于桩基和海床的波浪荷载三种情况,分析了海床土的动力响应以及桩基的水平位移之间的差异,探讨了海床土体参数对桩基水平变形的影响.研究结果表明海床土体液化会导致桩基水平变形增加,海床土渗透性、超固结性、结构性对桩基水平位移影响显著,研究成果可为海上风电单桩基础的设计与运维提供参考.  相似文献   

9.
地震是危害海上风电结构作业安全的重要环境因素,目前,国内尚未公开发表真实地震响应下,海上风电结构的实测动力响应数据。分析了某地震活动区海上风电结构的实测地震响应,采用随机子空间识别方法进行风机的模态识别,阐述了风机机舱偏航将引起前后、左右两个正交方向振动的耦合,并从理论上证明了利用耦合、解耦数据识别模态参数的差异。结果表明:1)耦合与解耦信号识别的频率、阻尼比完全相同,而耦合信号识别的模态振型与偏航角有关;2)地震作用会对结构产生巨大冲击;3)非地震作用下,风机塔筒前后、左右第一阶弯曲模态为主要模态,地震作用可以激发风机的高阶模态,使得塔筒中上部而不是顶部的振动响应最大。此分析对地震活动区海上风电结构的抗震设计具有一定的参考价值。  相似文献   

10.
海上风电基础局部冲刷会影响风电结构的稳定,对海上风电的安全运行至关重要。以四腿群桩导管架基础为研究对象,对潮流条件下基础局部冲刷开展试验研究。试验结果表明:0°水流条件下,最大冲刷深度为1.05倍桩径;45°水流条件下,最大冲刷深度为0.97倍桩径。并探索了新型蜂巢结构在群桩基础防冲刷中的应用,设计了蜂巢格室防护方案,发现在蜂巢防护情况下,两个流向作用于四腿群桩基础时最大冲刷深度仅为无防护情况下的27.3%和25.9%,表明蜂巢格室在海上风电基础的冲刷防护方面具有良好效果,在实际工程中具有较大的应用潜力。  相似文献   

11.
ZHANG Li-wei  LI Xin 《海洋工程》2017,31(5):559-566
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

12.
Ding  Hong-yan  Li  Jing-yi  Le  Cong-huan  Pan  Chen  Zhang  Pu-yang 《中国海洋工程》2022,36(6):849-858

As the offshore wind turbine foundation, the four-bucket jacket foundation has a large stiffness and the structure is difficult to be damaged under seismic load. Nevertheless, the saturated subsoil of the four-bucket jacket foundation tends to be liquefied under earthquake, which greatly affects the safety of offshore wind turbine. Therefore, the seismic performance of four-bucket jacket foundation is mainly reflected in the anti-liquefaction capacity of foundation soil. In this paper, the liquefaction resistance of sandy soil of four-bucket jacket foundation for offshore wind turbine is studied. The liquefaction and dynamic response of sandy soil foundation of four-bucket jacket foundation under seismic load are obtained by carrying out the shaking table test, and the influence mechanism of four-bucket jacket foundation on the liquefaction resistance of sandy soil foundation is analyzed.

  相似文献   

13.
海上风电基础结构研究现状及发展趋势   总被引:13,自引:1,他引:12  
对国外海上风电机组基础结构的研究与工程应用现状进行了较为详尽地分析,重点对我国海上风电场开发建设有借鉴意义的重力式结构、单桩结构、三角架结构和导管架结构进行了分析论述.基于我国海洋工程技术水平和海上风电产业发展的动态,分析发展适合我国国情的海上风电机组基础结构的可行性及必要性,提出我国海上风电产业发展所面临的挑战.  相似文献   

14.
Large diameter monopiles are typical foundation solutions for offshore wind turbines. In design of the monopile foundations in sand, it is necessary to understand the drainage conditions of the foundation soil under the design loading conditions as the soil performance (strength and stiffness) is highly dependent on the drainage conditions. This paper presents a numerical investigation into this issue, with a purpose to develop a simple design criterion for assessing the soil drainage conditions around a monopile in sand. It is found that for typical monopile foundations in sand, the drainage condition during a single load cycle is generally expected to be undrained. However, the current state-of-practice uses p-y springs derived for drained soil responses for monopile design. The impact of this discrepancy on monopile foundation design was evaluated and found to be insignificant due to the relatively low level of loading as compared to the capacity of the soil.  相似文献   

15.
Fixed offshore wind turbines usually have large underwater supporting structures.The fluid influences the dynamic characteristics of the structure system.The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction(FSI) is established,and the structural modes in air and in water are obtained by use of ANSYS.By comparing low-order natural frequencies and mode shapes,the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed.On basis of the above work,seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method.The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water.The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

16.
The eigenfrequency of offshore wind turbine structures is a crucial design parameter, since it determines the dynamic behavior of the structure and with that the fatigue loads for the structural design. For offshore wind turbines founded on monopiles, the rotational stiffness of the monopile-soil system for un- and reloading states strongly affects the eigenfrequency. A numerical model for the calculation of the monopile’s behavior under un- and reloading is established and validated by back-calculation of model and field tests. With this model, a parametric study is conducted in which pile geometry, soil parameters and load conditions are varied. It is shown that of course the rotational stiffness varies with mean load and magnitude of the considered un- and reloading span, but that for most relevant load situations the initial rotational stiffness of the monopile system, i.e. the initial slope of the moment-rotation curve for monotonic loading, gives a good estimate of the actual stiffness. Comparisons of different p–y approaches show that the ordinary API approach considerably underestimates the initial stiffness, whereas the recently developed ‘Thieken’ approach and also the ‘Kallehave’ approach give a much better prediction and thus might be used in the design of monopiles in sand.  相似文献   

17.
李彦娥  李涛  彭驰  李强  张杰 《海洋工程》2023,41(4):38-48
海上支撑结构的优化设计是海上风机技术发展的必然趋势,降低支撑结构的载荷是保证风机安全运行的有效途径。海上支撑结构受到风浪复杂环境荷载作用,风、浪载荷决定着塔底承受较大的剪力和倾覆力矩,同时风浪的随机性和周期性会影响塔架的疲劳载荷。基于海上风机支撑结构频率对载荷影响的研究,分析海上支撑结构频率对叶片根部挥舞和摆振响应的影响,探究频率对风机响应的影响机理。研究表明:波浪频率诱导是基础疲劳载荷响应的主要原因;开展单桩基础设计,当整机频率确定时,基础变径段可设置于浪溅区下部区域范围;叶片摆振响应受1P频率影响较大,在风机设计时可增加叶片摆振方向的阻尼;当整机频率邻近3P频率时,塔筒刚度变化对基础载荷响应的影响大于基础刚度变化;海上支撑结构设计时可优先考虑塔筒刚度。  相似文献   

18.
Offshore wind turbines can exhibit dynamic resonant behavior due to sea states with wave excitation frequencies coinciding with the structural eigenfrequencies. In addition to significant contributions to fatigue actions, dynamic load amplification can govern extreme wind turbine responses. However, current design requirements lack specifications for assessment of resonant loads, particularly during parked or idling conditions where aerodynamic damping contributions are significantly reduced. This study demonstrates a probabilistic approach for assessment of offshore wind turbines under extreme resonant responses during parked situations. Based on in-situ metocean observations on the North Sea, the environmental contour method is used to establish relevant design conditions. A case study on a feasible large monopile design showed that resonant loads can govern the design loads. The presented framework can be applied to assess the reliability of wave-sensitive offshore wind turbine structures for a given site-specific metocean conditions and support structure design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号