首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长江口洪季北槽深水航道区域悬沙沉降速度估算   总被引:2,自引:2,他引:0  
根据北槽深水航道区域洪季多年固定测点的水文泥沙资料,综合利用Rouse公式及霍夫变换方法,估算了深水航道工程下洪季北槽悬沙沉降速度。从悬沙沉降速度角度探讨了北槽深水航道区域泥沙高回淤的基本原因。研究结果表明:航道回淤与悬沙沉降速度有十分密切的关系;洪季条件下,北槽悬沙沉降速度在2~8 mm/s之间,其悬沙沉降速度随盐度变化有先增大后变小的特点,在7‰左右时悬沙沉降速度最大;结合洪季北槽航道回淤分布,在深水航道CSW~CS3测点附近泥沙回淤量较高,该处航道高回淤是由于该区域具有较好的泥沙絮凝条件(盐度)及较高的水体含沙量致使该区域悬沙沉降速度较大造成的。  相似文献   

2.
长江口北槽一期工程后滩槽沉积物分布特征及其影响因素   总被引:1,自引:0,他引:1  
根据2000年7月和2001年5—6月份长江口北槽航道及两侧滩地进行的沉积物采样分析结果,对长江口深水航道一期工程实施后的滩槽泥沙交换情况以及在自然与工程双重影响下的沉积物分布情况进行了较为详细的讨论。长江口深水航道工程的实施,影响了长江口尤其是北槽及两侧滩地的水沙条件和沉积物分布。强劲的径流和潮流作用和风浪作用造成航槽及两侧滩地的冲淤转换及沉积物分布的变化;深水航道治理工程的实施使工程段内航槽泥沙粒径粗化,两侧滩地和工程段下游泥沙中值粒径变细,这反映了在工程实施后滩槽泥沙交换的变化。  相似文献   

3.
本文使用数学模型的方法,探讨不同工程阶段(1998年1月至2008年2月)北槽河床冲淤特征的动力机制。应用Delft3D模型建立了精度较高的长江口~北槽三维嵌套流场模型,为分析整治工程对北槽河床冲淤的影响,设计了4个数值试验来计算不同工程节点时北槽海域的流场分析,分别采用相同的外部驱动力(洪季)和不同工程节点的北槽地形与工程配置。通过比较不同工程节点的潮周期平均流场的平面分布、典型横断面分布和航道剖面分布及变化,发现:随着导堤、丁坝工程的建设,新建导堤和丁坝对应区段的主槽水动力显著增强,可见"双导堤+丁坝群"的束流效果明显;新建坝田,受导堤、丁坝影响水动力急剧减弱。不同工程阶段影响下,北槽海域水动力的"强弱变化"分布与同期河床"冲淤变化"格局基本吻合,因此,深水航道整治工程阶段影响下的水动力强弱变化是引发北槽河床冲淤变化的主要动力因素。  相似文献   

4.
采用三维潮流温盐数学模型对六横岛附近海域的水动力环境及盐度场分布进行数值模拟,并以实测资料进行验证,所建立模型可以较好地反映该海域潮流动力特征及盐度场的分布情况。利用验证后的三维数学模型,对海水淡化工程浓盐水排放后盐度场分布进行计算,将排放后的盐度分布与工程前进行对比分析,并推算盐升面积及垂向盐度增量。结果表明,海水淡化工程排放的浓盐水对六横岛海域盐度分布的影响主要集中在排水口附近的底层,影响区域呈带状分布,最大盐度增量为1.2左右,且排水口附近海域出现盐度垂向分层。  相似文献   

5.
基于分形插值方法在时间尺度上对长江口12.5 m深水航道2011至2013年的回淤量进行研究。分析垂直尺度因子对年回淤量的影响,给出年回淤量的计算公式,预测和评估长江口航道的年回淤量。研究结果表明,分形插值可以较好的反映长江口12.5 m深水航道的月回淤量的变化,通过调整垂直尺度因子,可以得到包含动力和泥沙特性在内的综合因素对深水航道年回淤量的影响。基于分形插值方法构建了长江口深水航道年回淤量计算公式,可以依据垂直尺度因子di对长江口航道年回淤量进行相对准确的预测和评估。确定了垂直尺度因子的变化范围为-0.12至0.20,进而得到近些年的年回淤量的变化范围为8 023.7×104m3至10 303.2×104m3,其最小回淤量为6 580×104m3。  相似文献   

6.
在充分认识传统沉降筒缺陷的基础上提出了"大型可温控自动搅拌沉降试验筒"。通过室内系列试验发现:(1)含沙量对长江口细颗粒沉降速度影响最大;(2)温度上升,沉速增加,但不同阶段影响程度有所不同;(3)含沙量越高,盐度对沉速的影响越小,含沙量相同情况下,长江口北槽悬沙枯季水温下盐度对沉速的影响在1.8~5.7倍左右;洪季水温下盐度对沉速的影响在1.5~2.2倍左右。(4)枯季最佳絮凝盐度在7左右,最佳絮凝含沙量为7 kg/m3;洪季最佳絮凝盐度在10~12左右,最佳絮凝含沙量为4.5kg/m3。本研究成果可望加深我们对细颗粒泥沙动力过程相关机理的认识,同时可为相关港口、航道的淤积机理分析,数学模型、物理模型研究工作提供一定技术参考。  相似文献   

7.
长江口盐度的时空变化特征及其指示意义   总被引:19,自引:4,他引:19  
2003年2,7月在长江口进行了枯、洪季大规模综合水文测验,布控范围西自江阴东至口外-20m,测验站点覆盖4条入海汊道.测验资料统计分析表明:(1)径流大小、汊道分流比、潮汐强弱和地形条件是控制盐度时空变化的主要要素;(2)在盐度空间分布上从大至小的顺序是:北支,南槽,北槽,北港口;(3)北支枯季发生盐水倒灌南支,而洪季可有一半以上区段为淡水所控;在其他3个入海汊道中,北港口门段是长江口盐淡水混合相对最弱的区段,盐度潮周期变幅最大,但洪枯变幅最小;南槽的盐淡水混合较强,盐度潮周期变幅较小,但洪枯变幅很大;北槽介于两者之间.(4)盐度时空变化反映洪季北支、南港和南槽分流比都有所增加.  相似文献   

8.
九龙江河口区三维盐度数值计算及分析   总被引:2,自引:1,他引:1  
本文利用ECOMSED模式建立了一个九龙江河口区水动力及盐度的三维数值模型.利用ECOMSED中的物质输运模块,模拟了九龙江河口区的盐度随着潮流运动的变化过程;模型采用河口区丰水期实测水文资料进行验证,计算和分析了河口区水平以及垂直断面的盐度分布情况,分析表明,河口区的盐度分布受潮流运动及九龙江淡水共同作用,有明显的潮周期特征,落潮时在河口区表层以九龙江淡水为主,外海高盐水占据底层区域;而在涨潮时垂向混合较强,表底分层不明显.  相似文献   

9.
王丽华  恽才兴 《海洋学报》2010,32(3):153-161
长江口深水航道工程于1998年开工建设,2002年和2005年一期和二期工程先后竣工,分别达到8.5和10.0 m通航水深。自2006年三期工程实施以来,北槽航道中段连续4a发生严重淤积,年疏浚维护量平均达6×107m3,影响三期工程目标的如期实现。通过自主开发的数字高程模型定量分析平台,建立时间序列的空间分布属性数据库,对长江口深水航道工程治理过程前后的河床冲淤变化规律和工程效果进行量化分析,分析结果揭示了长江口南港北槽深水航道近期淤积的泥沙来源、淤积过程、主要淤积原因和淤积部位,从而为工程治理对策提供科学依据。  相似文献   

10.
耦合海洋和溢油模型,建立起1个适用于长江口深水航道内溢油轨迹预报模型。海洋模型考虑了深水航道中导堤丁坝的影响,能够较好地模拟深水航道内流场,使物理场更加可信;溢油模型采用前国际上常用的随机游走和拉格朗日油粒子追踪法,预测油粒子的漂移扩散轨迹和扫海面积。研究表明:在深水航道中段发生的溢油事故,油粒子的漂移分布和扫海面积受导堤丁坝和流场的共同影响,涨急时刻溢油24h后油粒子的分布和扫海主要分布在导堤丁坝附近,落急时刻溢油的油粒子则大部分分布于导堤丁坝外,扫海面积也比涨急时刻大,对九段沙自然保护敏感区域产生一定程度的潜在生态影响。本文用数值实验的方法验证了海洋模型中考虑导堤丁坝与不考虑导堤丁坝相比,溢油轨迹预测是有差别的,考虑了导堤丁坝会对油粒子在导堤丁坝附近的漂移和扩散起阻挡约束和聚集的作用,没有考虑导堤丁坝的溢油扫海面积增大。  相似文献   

11.
河口整治工程建筑物局部冲刷试验研究   总被引:3,自引:0,他引:3  
采用正态系列模型延伸法,通过试验研究了长江口深水航道治理一期工程丁坝坝头、北导堤头部的局部冲刷深度和范围,试验结果预报了丁坝坝头和北导堤头部的冲刷深度,并得出了合理的防护范围,随着长江口深水航道治理工程实施,试验结果得到较好的实践检验。分别采用稳定流和潮汐往复流试验方法,比较了不同试验水流条件的丁坝坝头冲刷深度,通过原型沙和轻质沙的比较试验,比较了系列模型延伸法采用不同模型沙得出试验结果。  相似文献   

12.
水文气象条件变化对长江口盐水入侵影响研究   总被引:3,自引:0,他引:3  
分析论述了长江口盐水入侵的研究现状、影响因素、入侵变化规律及时空分布特征,将三维数值模式EFDC应用于长江口及其邻近海域,对长江口、杭州湾及邻近海区的水动力特性及盐度进行数值计算,研究结果表明,北港的盐水入侵强度高于北槽,北槽的盐水入侵强度又高于南槽,并且北港淡水往外冲淡的强度也高于南、北槽.在模拟长江口水动力特征和盐...  相似文献   

13.
长江口整治工程对盐水入侵影响研究   总被引:6,自引:1,他引:5  
根据实测资料分析了长江口的盐水入侵问题。采用调和常数得到外海控制潮位,用流量控制上游边界,建立了长江口、杭州湾及邻近海域正交曲线坐标系下的二维潮流和盐度数学模型。模型验证了长江口洪、枯季时大、中、小潮的潮位、流速、流向和盐度,较好地模拟了口外顺时针旋转流和口内往复流的特征,反映了外海盐水入侵和北支盐水倒灌的运移特性。在此基础上对长江口综合整治规划方案进行了研究,讨论了整治工程对减轻长江口盐水入侵的作用。  相似文献   

14.
采用x方向伸展坐标下的二,三维方程,建立了开避或增深深水航道前后的潮流场数值模模式。该模式在航道横向上网格变距,以保证航道横向上有一定量的网格覆盖。在计算中采用二,三维交替进行,既节省大量计算时间,又保证了计算的稳定性。  相似文献   

15.
陈维  匡翠萍  顾杰  秦欣 《海洋科学》2013,37(4):75-80
根据长江口南沙头通道、横沙通道和南北槽分汊口的断面水深变化及长江口南北港和南北槽的分流比变化实测资料,分析了长江口北槽深水航道淤积的原因。结果表明,北槽深水航道上段淤积受多种因素影响,其中,南沙头通道和横沙通道的发展对深水航道影响最大。南沙头通道的发展在加大落潮流量的同时,对南港南岸会产生一定的冲刷,后经沙洲的阻挡,把泥沙带向南港北岸,在北槽进口段处落淤,直接影响了进入深水航道的落潮量;横沙通道由于直接贯通了北港北槽的水沙交换,因而削弱了南港和北槽之间的水沙交换,促使北槽深水航道上段产生淤积,这也是南槽河道上段刷深的一个主要原因,而南槽河道的发展必然减少了进入北槽的落潮量,进一步加剧了北槽深水航道上段的淤积。同时,科氏力与北槽南导堤分流口鱼咀工程对深水航道也造成了一定的不可忽视的影响。研究成果对治理北槽深水航道淤积问题保障深水航道正常运行具有十分重要的科学实践意义。  相似文献   

16.
2019年以来,长江口海域年疏浚总量约为7 000×104 m3,现有的7座吹泥站停用后,长江口倾倒区容量仅剩约3 000×104 m3,疏浚物处置缺口约为4 000×104 m3,需及时开展海洋倾倒区选划工作。通过FVCOM (Finite Volume Community Ocean Model)数值模型对预选倾倒区进行抛泥扩散模拟,并分析其影响。根据长江口航道管理局所统计的疏浚船只,结合实际情况,选定12 000 m3舱容作为代表船只进行模拟。模拟结果显示,抛泥悬浮物主要在倾倒区周围呈螺旋状扩散,从扩散范围来看,4个预选倾倒区抛泥时,其10 mg/L增量包络线均不会显著影响到附近主航道及周边环境敏感区,其中预选倾倒区D扩散影响范围最大,C次之,A和B扩散影响范围最小。从动力角度来看,长江口深水航道北侧两个预选倾倒区(A和B)倾倒扩散时,对南侧深水航道造成回淤的概率更大,深水航道南侧水动力条件优于北侧。综合抛泥扩散影响范围和动力条件来看,预选倾倒区C位置最佳。  相似文献   

17.
根据南海温、盐度历史观测数据的季平均值和季平均风应力场,采用三维非线性海流诊断模式,对南海大陆架外深水海区四季平均流场进行了数值模拟计算。所得的南海四季环流总趋势以及一些中小尺度的涡旋现象,同已有的一些研究结果基本相符。此外,还较好地反映了南海海流的季节变化特征和流场在不同深度的分布特点。  相似文献   

18.
长江口外及毗邻海域盐度的时空变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2005年夏季和秋季以及2006年春季在长江口外及毗邻水域进行大、小潮准同步周日连续观测的盐度资料进行整理、统计和分析,总结了长江口外及毗邻海域盐度的空间分布和时间变化特征.结果表明:1)测量区域内盐度平面分布特征是以长江口和杭州湾湾内为相对低盐中心,向外海和南北两翼盐度增高,存在盐度梯度较高的带;2)盐度垂向分布...  相似文献   

19.
长江口水下高分辨率微地貌及运动特征   总被引:4,自引:1,他引:4  
在 1997年枯季和 1998年全流域特大洪水后期 ,用旁侧声纳、热敏式双频测深仪、差分GPS、2 4道浅地层剖面仪、声学悬沙浓度剖面仪、流速仪等对长江口区主航槽进行走航测量和定点探测 ,第一次获得了长江口大量细颗粒大尺度底形沙波三维实测图像、数据以及底形运动的连续时间序列可视图像和数据。对这些图像和数据的分析结果对河口动力沉积和动力地貌过程、河口地形演变、大比例尺水下地形测量、三维流场的数值模拟、港口航道的疏浚以及深水航道的稳定性研究等具有重要意义。  相似文献   

20.
本文针对长江口深水航道工程建设前后航道内波浪特征的变化进行了分析研究,首先基于对长江口历史波浪资料分析,确定了E、NE和SE3个浪向为航道内典型代表,采用第3代波浪模型SWAN对工程建设前后的波浪进行模拟计算。研究表明,航道工程建设后航道内的有效波高和周期明显减小,但是其变化的规律基本一致。在不同天文潮影响时,航道内的有效波高和周期大不相同。E向和NE向的浪在大潮期间有效波高和周期均高于小潮时,SE向浪却相反。对于NE向的浪,航道工程对有效波高的影响大致呈现出从右向左逐渐减弱。对于E向和SE向的浪,航道工程对有效波高的影响大致呈现出从右向左先增强再减弱。航道工程对不同方向的浪在不同分段上也有所不同,在右段对NE向的消弱最强,对SE向最弱,在中段和左段对E向消弱最强,对NE向最弱。航道内流场与水位对波要素的影响也略有差别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号