首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Benthic macroinvertebrate abundance, taxonomic composition, and surface flooding dynamics were compared among high and low elevation stands of narrow-leaved cattail (Typha angustifolia) and invasive common reed (Phragmites australis) at Iona Island Marsh, an oligohaline wetland, and Piermont Marsh, a mesohaline wetland, within the Hudson River National Estuarine Research Reserve during 1999 and 2000. Overall, the benthic macroinvertebrate community at both sites was similar in composition and abundance to those documented from other low-salinity systems. Macroinvertebrate taxa richness was lowest in mesohaline common reed, but similar among common reed and cattail habitats in oligohaline wetlands. Total macroinvertebrate densities were greater at high-elevation compared to low-elevation reed stands at the mesohaline site during summer 1999 and spring 2000. Total macroinvertebrate densities were similar among both oligohaline vegetation types during all seasons, except for spring 2000, when lower densities were observed in low-elevation common reed. A weak positive relationship between macroinvertebrate density and depth of flooding suggests that surface hydrology may be influencing the observed patterns of macroinvertebrate density among the vegetation stands. These results suggest that benthic macroinvertebrate abundance and diversity may not necessarily be impaired in low-salinity wetlands experiencing invasion by common reed unless the change in vegetation is accompanied by a measurable alteration to physical conditions on the marsh surface (i.e., elevation and flooding dynamics).  相似文献   

2.
Wetlands are commonly assessed for ecological condition and biological integrity using a three-tiered framework of landscape-scale assessment, rapid assessment protocols, and intensive biological and physiochemical measurements. However, increased inundation resulting from accelerated sea level rise (SLR) is negatively impacting tidal marsh ecosystem functions for US Northeast coastal wetlands, yet relative vulnerability to this stressor is not incorporated in condition assessments. This article assesses tools available to measure coastal wetland vulnerability to SLR, including measurements made as part of traditional rapid condition assessments (e.g., vegetation communities, soil strength), field and remote sensing-based measurements of elevation, VDatum, and Sea Level Affecting Marshes Model (SLAMM) model outputs. A vulnerability metric that incorporates these tools was calibrated and validated using recent rates of marsh vegetation losses (1972–2011) as a surrogate for future vulnerability. The metric includes complementary measures of elevation capital, including the percentage of high vs. low marsh vegetation, Spartina alterniflora height, elevation measurements, and SLAMM outputs that collectively explained 62% of the variability in recent rates of marsh vegetation loss. Stepwise regression revealed that all three elements (elevation, vegetation measures, and SLAMM outputs) explained significant and largely unique components of vulnerability to SLR, with the greatest level of overlap found between SLAMM outputs and elevation metrics. While soil strength varied predictably with habitat zone, it did not contribute significantly to the vulnerability metric. Despite the importance of determining wetland elevation above key tidal datums of mean sea level and mean high water, we caution that VDatum was found to perform poorly in back-barrier estuaries. This factor makes it difficult to compare elevation capital among marshes that differ in tidal range and poses accuracy problems for broad-scale modeling efforts that require accurate tidal datums. Given the pervasive pattern of coastal wetland drowning occurring in the Northeastern USA and elsewhere, we advocate that compilation of regional data on marsh habitats and vulnerability to SLR is crucial as it permits agencies to target adaptation to sites based on their vulnerability or mixture of habitats, it helps match sites to appropriate interventions, and it provides a broader regional context to site-specific management actions. Without such data, adaptation actions may be implemented where action is not necessary and to the disadvantage of vulnerable sites where opportunities for successful adaptation will be missed.  相似文献   

3.
Palaeosols associated with exposure surfaces in Mississippian platform carbonate sequences in Britain invariably show evidence for later alteration by sea water. These alteration effects can be attributed to flooding of the emergent platforms during transgressions that terminated exposure surface development. A study of 230 palaeosol profiles representing 60 stratigraphic levels has revealed a two fold division of these marine hydromorphic effects. Palaeosols in ramp sequences (Chadian-Arundian stages) are capped by ferroan dolomite horizons with carbonized rootlets, pyrite and thin coals. The ferroan dolomites exhibit δ13C and δ18O values indicative of formation in brackish waters. These are interpreted as coastal marshes that developed landward of a transgressive shoreline. Younger Asbian-Brigantian palaeosols lack these dolomites but have been extensively pyritised. The pyrite also developed through marine hydromorphic alteration but flooding was relatively instantaneous over the flat topped platforms. These differences in flooding history reflect both different platform configuration and more rapid transgressions during the Asbian-Brigantian, likely a result of glacio-eustatic effects. Flooding characteristics of the Asbian-Brigantian platforms differ from those associated with late Cainozoic examples, apparently because complete platform rims were not developed. Similar mineralogical alteration effects are likely to be common in other platform sequences in the geological record, but have not been documented.  相似文献   

4.
The main semidiurnal (M2 and S2) and diurnal (K1 and O1) tidal constituents are simulated in the Persian Gulf (PG). The topography is discretized on a spherical grid with a resolution of 30 s in both latitude and longitude. It includes coastal areas prone to flooding. The model permits flooding of drying banks up to 5 m above mean sea level. At the open boundary, it is forced by 13 harmonic constituents extracted from a global tidal model. The model results are in good agreement with tide gauge observations. Co-tidal charts and flow extremes are presented for each tidal constituent. The co-tidal charts show two amphidromic points for semidiurnal and one for diurnal tidal constituents. Maximum amplitudes of sea level are obtained for the north-western part of the PG, where coastal flooding prevails in wide areas. Strong tidal currents occur in different parts of the PG for different types of constituents. Maximum velocities are found in shallow regions. Particularly, high amplitudes of elevations and high speed currents are founded in the canal between Qeshm Island and the mainland. Rectification of tides around Qeshm Island affects the propagation of tides in the PG as far as the coast of Saudi Arabia and the northern part of the PG.  相似文献   

5.
华南西部滨海湿地调查及主要成果   总被引:1,自引:1,他引:0  
通过遥感、单波束测量、地质取样、海水取样、钻探、地下水采集与监测等多种调查手段及工作方法,首次在我国华南西部开展1∶10万滨海湿地地质调查与生态环境评价工作,对滨海湿地类型及分布、滨海海域地形地貌、沉积物环境质量、海水环境质量、生态地质演化、地下水化学要素进行综合分析与研究。项目系统查明了该区滨海湿地类型、分布、生态环境现状及其主要影响因素,对湿地生态地质环境质量进行了综合评价,构建了华南西部滨海湿地地质调查技术方法体系和生态地质环境综合评价体系,提出了滨海湿地保护和恢复的建议,为后续我国南方滨海湿地调查提供了示范。  相似文献   

6.
胶州湾滨海湿地的景观格局变化及环境效应   总被引:3,自引:0,他引:3  
在湿地景观类型分类基础上,利用RS及GIS技术提取了1986、1995和2010年胶州湾滨海湿地的Landsat卫星假彩色合成影像的空间属性数据,利用斑块动态度、斑块密度指数、景观多样性指数、斑块破碎化指数研究了胶州湾滨海湿地的景观格局变化及累积环境效应。结果表明,1986~2010年胶州湾滨海湿地总面积减少,河流与河口湿地面积稍有增大,潮间带滩涂和潮上带湿地面积和斑块数减小;养殖池面积增大、斑块数增多,盐田面积减小、斑块数基本未变,增加了湿地公园这种新的人工湿地景观类型。期间,湿地的景观斑块密度指数、多样性指数和景观斑块破碎化指数增大了。上述湿地面积和景观格局变化是由围垦、城市化、港口和道路建设、河流径流量和输沙量减少、海岸侵蚀、海水入侵、全球变暖、海面上升等因素引起的,并导致湿地生物多样化水平下降、有害植物入侵、环境净化功能降低、污染和赤潮灾害加重、植被退化演替、渔业资源衰退和湿地生态系统服务价值降低等累积环境效应。为减轻这些不利的累积环境效应,应采取建设湿地自然保护区、控制养殖池和盐田规模、发展工业循环经济和生态农业等措施保护胶州湾滨海湿地。  相似文献   

7.
上海复合极端风暴洪水淹没模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
河口三角洲和沿海城市面临着台风、暴雨、高潮位和上游下泄洪水叠加的“四碰头”复合极端风暴洪水的严重威胁。构建了大气-海洋-陆地相耦合的一体化数值模拟系统,实现了上海市“风”“暴”“潮”“洪”多灾种复合情景的极端洪涝淹没模拟,并验证了耦合方法的有效性,为复合风暴洪水的一体化模拟提供了一套可行的数值模拟方法。在9711台风影响下,模拟了1998年堤防升级改造后淹没面积(水深>0.2m)比改造前减少了62%,表明沿海沿江堤防设施建设在上海市防台防汛中起着关键性的作用。复合极端风暴洪水的有效模拟可为财产保险和未来市政规划提供参考。  相似文献   

8.

Many coastal urban areas and many coastal facilities must be protected against pluvial and marine floods, as their location near the sea is necessary. As part of the development of a Probabilistic Flood Hazard Approach (PFHA), several flood phenomena have to be modelled at the same time (or with an offset time) to estimate the contribution of each one. Modelling the combination and the dependence of several flooding sources is a key issue in the context of a PFHA. As coastal zones in France are densely populated, marine flooding represents a natural hazard threatening the coastal populations and facilities in several areas along the shore. Indeed, marine flooding is the most important source of coastal lowlands inundations. It is mainly generated by storm action that makes sea level rise above the tide. Furthermore, when combined with rainfall, coastal flooding can be more consequent. While there are several approaches to analyse and characterize marine flooding hazard with either extreme sea levels or intense rainfall, only few studies combine these two phenomena in a PFHA framework. Thus this study aims to develop a method for the analysis of a combined action of rainfall and sea level. This analysis is performed on the city of Le Havre, a French urban city on the English Channel coast, as a case study. In this work, we have used deterministic materials for rainfall and sea level modelling and proposed a new approach for estimating the probabilities of flooding.

  相似文献   

9.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

10.
朱叶飞  蔡则健 《江苏地质》2007,31(3):236-241
通过对江苏海岸带TM影像进行计算机自动分类与人工解译相结合的分类研究,探讨了提高海岸带湿地分类精度与效率的方法与途径。先采用分区分层分类的方法依据海岸线将本研究区分为陆地和海滩两部分。对于陆地部分,对基础分类影像经过非监督分类和光谱聚类处理后,获得分类模板,利用此模板对基础分类影像进行监督分类,对于海滩部分依据平均高潮位线、中潮位线、NDVI对影像进行分层分类,在分类的过程中运用了人机互译判读方法。结果精度评价表明该方法能明显提高海岸带湿地的分类精度。最后,基于VB和MO控件开发了江苏海岸带湿地GIS系统。  相似文献   

11.
莱州湾南岸滨海湿地作为环渤海滨海湿地的一部分,具有海洋与河口交互性、海陆过渡性和生态脆弱性等特点,湿地面积广阔、资源丰富,是东北亚环西太平洋鸟类迁徙的重要“中转站”及越冬、栖息和繁殖地。湿地总面积为1150.079km^2,湿地维管束植物区系包括维管束植物53科144属217种。近年来,在对滨海湿地的开发中,虾池、盐田等人工湿地面积不断扩大,造成自然湿地面积减小、植被退化、地貌和水文条件改变、生物多样性下降,改变了原始的滨海湿地自然景观,破坏了珍稀鸟类的生存环境。  相似文献   

12.
The coastal zone of the Nile Delta is a promising area for energy resources and industrial activities. It also contains important wetland ecosystems. This coastal area witnessed several changes during the last century. A set of four satellite images from the multi-spectral scanner (MSS), thematic mapper (TM) and Systeme Pour l’Observation de la Terre (SPOT) sensors were utilized in order to estimate the spatio-temporal changes that occurred in the coastal zone between Damietta Nile branch and Port-Said between 1973 and 2007. Image processing applied in this study included geometric rectification; atmospheric correction; on-screen shoreline digitizing of the 1973 (MSS) and 2007 (SPOT) images for tracking the shoreline position between Damietta promontory and Port-Said; and water index approach for quantifying Manzala lagoon surface area change using 1973 (MSS), 1984 (TM) and 2003 (TM) images. Results showed that coastal erosion was severe near Damietta promontory and decreased eastward, however, accretion was observed near Port-Said. About 50% of the coastal strip was under erosion and 13% was under accretion. In addition, a remarkable decline (34.5%) of the Manzala lagoon surface area was estimated. These changes were attributed mainly to the control of the River Nile flooding and the land use change by anthropogenic activities.  相似文献   

13.
Human alteration of land cover (e.g., urban and agricultural land use) and shoreline hardening (e.g., bulkheading and rip rap revetment) are intensifying due to increasing human populations and sea level rise. Fishes and crustaceans that are ecologically and economically valuable to coastal systems may be affected by these changes, but direct links between these stressors and faunal populations have been elusive at large spatial scales. We examined nearshore abundance patterns of 15 common taxa across gradients of urban and agricultural land cover as well as wetland and hardened shoreline in tributary subestuaries of the Chesapeake Bay and Delaware Coastal Bays. We used a comprehensive landscape-scale study design that included 587 sites in 39 subestuaries. Our analyses indicate shoreline hardening has predominantly negative effects on estuarine fauna in water directly adjacent to the hardened shoreline and at the larger system-scale as cumulative hardened shoreline increased in the subestuary. In contrast, abundances of 12 of 15 species increased with the proportion of shoreline comprised of wetlands. Abundances of several species were also significantly related to watershed cropland cover, submerged aquatic vegetation, and total nitrogen, suggesting land-use-mediated effects on prey and refuge habitat. Specifically, abundances of four bottom-oriented species were negatively related to cropland cover, which is correlated with elevated nitrogen and reduced submerged and wetland vegetation in the receiving subestuary. These empirical relationships raise important considerations for conservation and management strategies in coastal environments.  相似文献   

14.
Recent hydrological disturbances, including flooding, dry-season streamflow, and drought, greatly altered coastal wetland habitats in sourthern California. At Tijuana Estuary, a six-year study of salt-marsh vegetation patterns during these rare conditions documented substantial temporal variability in plant growth and distribution. Important to cordgrass (Spartina foliosa Trin.) dynamics were the amount and timing of streamflows, which reduced soil salinity and alleviated stresses on plant growth. Poorest growing conditions occurred in 1984 when both river and tidal flows were lacking; soils had low moisture and extreme salinities (avg.=104‰ in September). Plant stress was documented in 1984 as high mortality (62% fewer stems than in 1983) and reduced height (19% less than in 1983). Cordgrass height was greatest in 1980 following winter flooding (20% increase over 1979); densities were greatest in 1983 with summer freshwater influxes (60% increase over 1982). A carbon allocation model is proposed to explain the varied responses.  相似文献   

15.
Coastal flooding occurs due to storm surges generated by tropical and extra-tropical cyclones on the globe. The meteorological forcing fields for the generation of storm surges are the tangential surface wind stress on the ocean surface and the normal atmospheric pressure gradients associated with the weather systems. The large scale forcing from the cyclones is referred to as the synoptic scale and storm surge prediction from synoptic scale forcing is well developed and is reasonably satisfactory around the world. However, coastal flooding also occurs from weather systems, with forcing on a meso-scale and also from remote forcing. It is proposed here that the term “Storm surge” be used to only refer to coastal flooding from synoptic scale forcing and the terminology “Rissaga” be used for coastal flooding from meso-scale forcing. For flooding due to remote forcing, a new term “Kallakkadal” is proposed.  相似文献   

16.
海岸带是位于海陆结合部的复杂环境系统,是人类活动最集中的地区。中国大陆海岸线约18000km,涉及沿海11个省,由于经济社会高速发展,海岸带地区的人口、资源、环境矛盾日益突出,面临海岸带资源无序开发、水土污染、滨海湿地退化、海岸侵蚀、地面沉降等一系列生态环境与灾害地质问题,已成为影响生态文明建设的主要问题之一。因此中国持续加大海岸带生态环境保护力度,并提出实施重要生态系统保护和修复重大工程、强化湿地保护和修复等政策措施。美国国家海洋和大气管理局主导的海岸带损害评估及修复计划已实施了近30年,并取得了显著效果,其完善的法律制度体系、规范的损害评估和修复程序、数据集成管理和共享应用等成功经验值得学习借鉴。建议加快完善中国海岸带生态环境损害评估与修复的技术方法体系和制度体系、有序开展海岸带自然资源和生态环境调查、加强海岸带及滨海湿地等重要生态系统的演化和修复技术研究与示范,并构建统一的海岸带基础调查数据库、建立海岸带监测预警体系。  相似文献   

17.
现代黄河三角洲滨海湿地生态水文环境脆弱性   总被引:1,自引:0,他引:1       下载免费PDF全文
受大气降水、黄河水位断流、风暴潮和人类工程活动等因素影响,现代黄河三角洲滨海湿地生态水文环境极其脆弱和敏感。本文运用地下水数值模拟方法,通过构建滨海湿地水文模型,以氯离子作为模拟因子,预测滨海湿地地下水趋势性变化。计算结果显示,湿地水位和盐度对湿地生长和发育起控制作用;黄河持续断流和强烈风暴潮对湿地水质影响明显;当风暴潮引起增水幅度超过正常潮高的2.4m,会造成沿海低地特别是北部未受防潮大坝保护的滨海湿地淹没。  相似文献   

18.
Pasquier  Ulysse  He  Yi  Hooton  Simon  Goulden  Marisa  Hiscock  Kevin M. 《Natural Hazards》2019,98(3):915-937

Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding.

  相似文献   

19.
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size selective and cohort abundance is partly determined at this stage. Because quantity and quality of food influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of salmon. To improve our understanding of the effects of wetland loss and salmon density on juvenile salmon foraging performance and diet composition in estuaries, we assembled Chinook salmon (Oncorhynchus tshawytscha) diet and density data from nine US Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and other explanatory variables on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss appeared to mediate the effect of density on salmon foraging performance and alter salmon diet composition. Specifically, density had no effect on foraging performance in the estuaries with less than 50 % wetland loss but had a negative effect on foraging performance in the estuaries with greater than 50 % wetland loss. These results suggest that habitat loss may interact with density to constrain the foraging performance of juvenile Chinook salmon, and ultimately their growth, during a life history stage when survival can be positively correlated with growth and size.  相似文献   

20.
Semarang is one of the biggest cities in Indonesia and is nowadays suffering from coastal flooding. Land subsidences, high water tide, and inadequate structural measures play important roles in the coastal inundations. Structural and non-structural methods for controlling coastal flooding including dykes, drainage systems, pump stations, polder systems, coastal-land reclamations, coastal planning and management, public education, as well as the establishment of an institutional framework for disaster management have been implemented in the Semarang coastal area. Although some improvements have been made, the current flood management system has generally failed to address a wide range of coastal inundation problems. Some improvement actions have been proposed including stakeholders involvement on the disaster mitigation. For a long period coastal management, accelerated sea level rises due to global warming should also be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号