首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
基于DRASTIC的含水层脆弱性模糊评价方法与应用   总被引:6,自引:1,他引:5  
通过分析目前广泛采用的DRASTIC方法存在的主要问题,将含水层脆弱性定义为模糊概念,结合模糊分析评价理论及三标度分两步的层次分析法建立了一套改进的含水层脆弱性评价模型。为测试其可靠性,分别将改进模型和传统DRASTIC模型应用于祁县东观镇含水层脆弱性评价中。研究结果表明:改进模型得到的脆弱性等级变化较后者更灵敏,分布范围及变化情况更精确,更能真实反映含水层脆弱性在空间上的连续变化,且计算简便、脆弱性分区图效果直观,丰富和完善了地下水脆弱性评价方法。  相似文献   

2.
《地下水》2017,(1)
DRASTIC法在地下水脆弱性评价中应用较为广泛,但存在一定局限性,采用DRASTIC法与地理信息系统相结合的评价方法,可以较好的解决DRASTIC法在地下水脆弱性评价中的不足。本文主要从评价工作流程、评价指标构建、评价指标赋分、脆弱性评价分级等方面探讨了基于ArcGIS的DRASTIC评价方法。通过对各评价因子分析结果进行加权叠加分析,可以直观明了地反映评价区域地下水脆弱性具体分布状况,方便快捷的完成地下水脆弱性分区,对于制定水资源保护规划、地下水污染防治规划,合理开发利用和保护地下水资源具有一定的指导意义。  相似文献   

3.
西辽河平原(内蒙古部分)地下水固有脆弱性评价   总被引:3,自引:0,他引:3  
在西辽河平原地下水资源评价的基础上,选取影响西辽河平原固有脆弱性的最主要的7个影响因子,利用GIS平台的空间分析功能,将研究区划分为14365个评价单元,运用基于DRASTIC的模糊综合评价方法对该区的地下水固有脆弱性进行了综合评价,并绘制了脆弱性分布图。评价结果表明西辽河平原(内蒙古部分)地下水脆弱性存在3个分区:大部分地区为地下水稍易污染区;南部的黄土地区为地下水稍难污染区;而西辽河和乌尔吉木伦河的中上游为地下水相对略易污染区。评价结果对该区地下水资源保护、防止地下水污染具有指导作用。  相似文献   

4.
基于DRASTIC模型的城市地下水脆弱性评价综述   总被引:2,自引:0,他引:2  
地下水脆弱性评价是环境规划和决策的有用手段,国内外已有很多研究,也提出了各种计算防污性能的模型。文章针对城市地下水污染问题介绍了评价地下水防污性能的DRASTIC模型。对DRASTIC模型的指标体系和评价方法进行了介绍,列举了DRASTIC模型的局限性;综述了目前国内外基于DRASTIC模型的城市地下水脆弱性分析的改进的模型及其应用实例,并对其应用前景进行了展望。  相似文献   

5.
城市地下水脆弱性评价方法及应用   总被引:3,自引:0,他引:3  
刘香  王洁  邵传青  易立新 《地下水》2007,29(5):90-92
地下水脆弱性评价是合理开发利用和保护地下水的基础.以国内外广泛应用的DRASTIC模型为基础,结合我国华北平原沉降带冲洪积含水层水文地质特征,提出了一种适用于层状含水层水文地质条件的城市地下水脆弱性评价模型--DRAMIP模型,并根据廊坊市的实际状况,对廊坊市浅层地下水进行了脆弱性评价,利用GIS技术生成了廊坊市浅层地下水脆弱性分布图.  相似文献   

6.
松花江松原段沿岸浅层地下水脆弱性评价   总被引:1,自引:0,他引:1  
为给松花江流域地下水污染防治与控制提供理论依据,基于DRASTIC模型,选取净补给量、包气带介质、含水层富水性、地下水水位埋深、土地利用类型、污染源影响和地下水开采模数建成评价指标体系,结合GIS技术对松花江松原段沿江两侧5~10 km范围内的浅层地下水脆弱性进行了分区,并将结果与地下水质污染评价结果进行了对比,最后通...  相似文献   

7.
太湖流域典型平原地区浅层地下水脆弱性研究   总被引:2,自引:0,他引:2  
以太湖流域典型平原地区苏州市为例,结合研究区水文地质特点,选取浅层地下水水位埋深等6项参数作为评价因子,建立基于墒权的浅层地下水脆弱性评价DRITuTmE模型。将评价模型与GIS技术相耦合,形成研究区浅层地下水脆弱性分区图,并进行研究区浅层地下水脆弱性评价。评价研究结果表明:所建立的评价模型避免了人为因素的干扰,能够真实地反映苏州市浅层地下水脆弱性程度。  相似文献   

8.
辽宁省中南部分城市地下水脆弱性评价   总被引:1,自引:0,他引:1  
通过对辽中南地区的地质与水文地质条件特征、含水层的富水性、开采利用地下水现状等资料的调查和了解,利用地下水脆弱性的DRASTIC评价模型和AHP模糊评价模型,对地下水固有脆弱性的七个因素指标进行了赋值、计算。最终得出了辽宁省中南部分城市地下水脆弱性分区分为强脆弱区、较强脆弱区、中等脆弱区、弱脆弱区。  相似文献   

9.
地下水是水资源的重要组成部份,地下水污染危害人的健康,影响人们的生产和生活,查明某一地区地下水容易受污染的可能性即地下水脆弱性,能为管理决策部门提供合理开发地下水资源,防治地下水污染的科学规划和管理依据。在脆弱性评价工作中,应用GIS技术完成地下水系统脆弱性编图,并进行地下水环境保护功能分区,是查明某一示范区地下水脆弱性的可靠手段和科学依据。本文以河北省沧州地区为例,以DRASTIC模型的七项评价因子为脆弱性评价指标,利用MAPGIS为平台实现地下水脆弱性编图,方便从事地下水工作的管理人员及时掌握地下水污染动态、空间分布及演化趋势。  相似文献   

10.
乌鲁木齐市位于西北干旱地区,地下水人均资源量严重不足,制约了城市经济和资源环境的协调发展。本次评价采用国内外应用成熟的DRASTIC方法,评价乌鲁木齐市浅层地下水脆弱性,首先对7个指标进行评分,建立符合研究区的DRASTIC评分体系,得到研究区DRASTIC模型的7个指标的评分图,然后利用ArcGis10.2软件的图层空间分析平台,结合评价结果做出了相应的脆弱性分区图。结果显示,乌鲁木齐市内乌鲁木齐河谷区及北部五一农场地段的地下水脆弱性为中—高等,主导因素为含水层介质类型为砂岩、砂砾石等透水性较好的地层,地下水埋深较小,地层渗透系数较高;位于市区南部的柴窝堡—乌拉泊村、永丰乡及北部的三坪农场至大草滩区域地下水脆弱性中等,其余地段地下水脆弱性低。  相似文献   

11.
基于GIS的地下水易污性评价系统   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了基于MapGIS开发的地下水易污性DRAMTICH评价系统,说明地下水易污性评价软件(GW-VAS)的基本框架、主要功能、组成部分、系统特点以及使用方法。该系统还对DRASTIC等其它常见的地下水易污性评价方法进行了综合集成,克服了单一方法缺乏对比性的不足,提高了评价结果的客观性、科学性和实用性。并将该方法应用于黄水河流域,利用传统的权重评分法和本文开发的方法进行了对比,结果表明,系统通用性好,方法实用性强。 更多还原  相似文献   

12.
Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC   总被引:2,自引:0,他引:2  
The main usefulness of groundwater vulnerability assessment maps is their ability to be an effective preliminary tool for planning, policy, and operational levels of decision-making. DRASTIC is one such assessment method. The DRASTIC index is made up of a calculated sum of products rating and weights for seven hydrogeological parameters that contribute to aquifer vulnerability. With the help of GIS, and based on the available data, maps of DRASTIC parameters were prepared for the Gaza Strip area in a case study. Each map was given a proper rate and a special weight factor developed. The final vulnerability map was obtained as a summation of the seven maps after multiplying each one with the appropriate weight. The vulnerability map was checked against the actual pollution potential in the area and nitrate concentration. The obtained vulnerability map is strongly correlated to known pollution values in the area.  相似文献   

13.
下辽河平原地下水脆弱性研究   总被引:7,自引:0,他引:7  
在参照DRASTIC方法的基础上,根据下辽河平原的具体状况,选择地下水埋深等11个参数作为该地区地下水脆弱性评价因子。评价因子的评分体系依据典型地区及相应标准确立,权重体系由层次分析法和决策分析法得到。在此基础上,利用模糊模式识别技术对下辽河平原地区的地下水脆弱性进行评价,评价结果与该地区地下水污染情况的拟合度较好。  相似文献   

14.
In this paper, groundwater aquifer vulnerability map has been developed by incorporating the major geological and hydro-geological factors that affect and control the groundwater contamination using GIS based DRASTIC model. This work demonstrates the potential of GIS to derive a map by overlying various spatially referenced digital data layers that portrays cumulative aquifer sensitivity ratings across the Kathmandu Valley, Nepal, providing a relative indication of groundwater vulnerability to contamination. In fact, the groundwater is the major natural resources in Kathmandu for drinking purpose. The decline in groundwater levels due to the over exploitation and thus extracted water from shallow aquifer has been contaminated by the infiltration of pollutants from polluted river and land surface is continuous and serious. As the demand for water for human and industrial use has escalated and at the same time, the engineering and environmental costs are much higher for new water supplies than maintaining the existing sources already in use. Management of groundwater source and protecting its quality is therefore essential to increase efficient use of existing water supplies. Aquifer vulnerability maps developed in this study are valuable tools for environmental planning and predictive groundwater management. Further, a sensitivity analysis has been performed to evaluate the influence of single parameters on aquifer vulnerability assessment such that some subjectivity can be reduced to some extent and then new weights have been computed for each DRASTIC parameters.  相似文献   

15.
Depth to water, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer (DRASTIC) model based on a geographic information system (GIS) is the most widely adopted model for the evaluation of groundwater vulnerability. However, the model had its own disadvantages in various aspects. In this work, several methods and the technologies have been introduced to improve on the traditional model. The type of the aquifer was replaced by the thickness of the aquifer, and the index of topography was removed. The indexes of the exploitation of the groundwater and the type of land use that reflected the special vulnerability were added to the system. Furthermore, considering the wideness of the study area, the fixed weights in the DRASTIC model were not suitable. An analytic hierarchy process (AHP) method and an entropy weight (Ew) method were introduced to calculate the weights of parameters. Then, the Spearman Rho correlation coefficients between IVI and the Nemerow synthetical pollution index (NI) of the groundwater quality were significantly improved, after the four steps of modification. The level differences with little gaps between Nemerow comprehensive pollution indexes and groundwater vulnerability occupied the proportion of the area from 75.68 to 84.04%, and finally, a single-parameter sensitivity analysis for the two models was used to compute the effective weights of these parameters. By comparison, the DRMSICEL model seems to perform better than the DRASTIC model in the study area. And the results show discrepancies between the vulnerability indices and groundwater quality as indicated by existence of vulnerable areas with bad water quality and vice versa.  相似文献   

16.
Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.  相似文献   

17.
The Nubian Sandstone Aquifer (NSSA) is the main groundwater resource of the El-Bahariya Oasis, which is located in the middle of the Western Desert of Egypt. This aquifer is composed mainly of continental clastic sediments of sandstone with shale and clay intercalations of saturated thickness ranging between 100 and 1500 m. Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sustainable resources management and land use planning. Accordingly, this research aims to estimate the vulnerability of NSSA by applying the DRASTIC model as well as utilising sensitivity analyses to evaluate the relative importance of the model parameters for aquifer vulnerability in the study area. The main objective is to demonstrate the combined use of the DRASTIC and the GIS techniques as an effective method for groundwater pollution risk assessment, and mapping the areas that are prone to deterioration of groundwater quality and quantity. Based on DRASTIC index (DI) values, a groundwater vulnerability map was produced using the GIS. The aquifer analysis in the study area highlighted the following key points: the northeastern and western parts of the NSSA were dominated by ‘High’ vulnerability classes while the northwestern and southeastern parts were characterised by ‘Medium’ vulnerability classes. The elevated central part of the study area displayed ‘Low’ aquifer vulnerability. The vulnerability map shows a relatively greater risk imposed on the northeastern part of the NSSA due to the larger pollution potential of intensive vegetable cultivation. Depth-to-water, topography and hydraulic conductivity parameters were found to be more effective in assessing aquifer vulnerability.  相似文献   

18.
Aquifer vulnerability has been assessed in the Senirkent-Uluborlu Basin within the Egirdir Lake catchment (Turkey) using the DRASTIC method, based on a geographic information system (GIS). There is widespread agriculture in the basin, and fertilizer (nitrate) and pesticide applications have caused groundwater contamination as a result of leaching. According to hydrogeological data from the study area, surface water and groundwater flow are towards Egirdir Lake. Hence, aquifer vulnerability in the basin should be determined by water quality in Egirdir Lake. DRASTIC layers were prepared using data such as rainfall, groundwater level, aquifer type, and hydraulic conductivity. These data were obtained from hydrogeological investigations and literature. A regional-scale aquifer-vulnerability map of the basin was prepared using overlay analysis with the aid of GIS. A DRASTIC vulnerability map, verified by nitrate in groundwater data, shows that the defined areas are compatible with land-use data. It is concluded that 20.8% of the basin area is highly vulnerable and urgent pollution-preventions measures should be taken for every kind of relevant activity within the whole basin.  相似文献   

19.
Groundwater vulnerability is a cornerstone in evaluating the risk of groundwater contamination and developing management options to preserve the quality of groundwater. Based on the professional model (DRASTIC model) and geographical information system (GIS) techniques, this paper carries out the shallow groundwater vulnerability assessment in the Zhangye Basin. The DRASTIC model uses seven environmental parameters (depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) to characterize the hydrogeological setting and evaluate aquifer vulnerability. According to the results of the shallow groundwater vulnerability assessment, the Zhangye Basin can be divided into three zones: low groundwater vulnerability risk zone (risk index <120); middle groundwater vulnerability risk zone (risk indexes 120–140) and high risk zone (risk index >140). Under the natural conditions, the middle and high groundwater vulnerability risk zones of the Zhangye Basin are mainly located in the groundwater recharge zones and the important cities. The high, middle and low groundwater vulnerability risk zones of the Zhangye Basin cover around 17, 21 and 62% of study area, respectively.  相似文献   

20.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号