首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
样品经艾斯卡试剂(碳酸钠和氧化锌)半熔法分解,沸水提取,使硒与主量金属元素铜、铅、锌及其他过渡金属和贵金属元素得到分离;滞留在溶液中的干扰元素,通过在酸性介质中加铁盐来掩蔽。采用焙烧分离-氢化物发生-原子荧光光谱法测定铜矿石、铅矿石和锌矿石中的硒,干扰少、灵敏度高。确定了最佳条件为盐酸浓度30%,硼氢化钾浓度20 g/L,铁盐浓度1 mg/mL;干扰元素的允许量铜为40 mg/L,铅为8 mg/L,锌为400 mg/L。同时对铜、铅、锌主量金属元素进行分离效率试验,效果好。方法检出限为0.0203μg/g,测定范围为0.15~100μg/g。经全国不同地区7家实验室采用铜矿石、铅矿石和锌矿石国家标准物质验证,精密度的重复性限和再现性良好,准确度高。建立的方法也适合于土壤及多金属矿物中硒的测定。  相似文献   

2.
熊英  吴赫  王龙山 《岩矿测试》2011,30(1):7-11
对电感耦合等离子体质谱法同时测定铜矿石、铅矿石和锌矿石中镓、铟、铊、钨和钼量时,基体效应和主量元素铜、铅、锌对测量的干扰情况及可能的消除方法进行试验,结果表明,溶液中共存小于200μg/mL锌对上述微量元素的测量没有干扰;溶液中共存大于50μg/mL的铜对镓、铟、铊、钨、钼的测量有负干扰,共存大于100μg/mL铅对钨的测量有正干扰,对钼的测量有负干扰,采用钪、铼、镧混合内标或基体匹配可以消除这些干扰;溶液中共存大于20μg/mL的铅对铊的测量有正干扰,选择203Tl为测量质量数,可使耐受铅的干扰浓度提高到50μg/mL,铅对铊测量的干扰可以采用校正系数法或基体匹配进行校正或消除。  相似文献   

3.
电感耦合等离子体发射光谱法直接测定铜矿石中银铜铅锌   总被引:14,自引:8,他引:6  
徐进力  邢夏  张勤  白金峰 《岩矿测试》2010,29(4):377-382
采用硝酸-氢氟酸-高氯酸混合酸消化处理样品,电感耦合等离子体发射光谱法同时测定了铜矿石中的银、铜、铅和锌。较系统地研究了仪器的最佳化工作参数,采用基体匹配和校正因子相结合的办法校正样品的基体干扰和光谱干扰。方法检出限为:银3.15μg/g,铜4.00μg/g,铅12.0μg/g,锌6.00μg/g(稀释因子500),精密度(RSD,n=12)在0.38%~4.55%。方法经国家一级多金属矿石标准物质验证,测定值与标准值吻合,结果准确可靠。  相似文献   

4.
铜矿石类型繁多,矿石赋存状态各异,成分复杂。在现有的铜矿石熔融制样X射线荧光光谱(XRF)分析方法中,选取标准物质个数和矿石类型少、分析范围宽,与实际样品类型相差太大,且制备的熔融片质量不高。本文选用铜含量既有良好浓度变化范围,又符合铜矿石常见含量的包括铜金银铅锌钼铜镍等各类矿石的24个标准物质,以四硼酸锂-偏硼酸锂-氟化锂为混合熔剂,熔剂与样品质量比为30:1,以溴化锂为脱模剂,改进样品预处理方式,将通常采用样品预氧化后或熔融中加入脱模剂的方式,改进为加入脱模剂后再用混合熔剂完全覆盖的方法制备了高质量的熔融片,建立了XRF测定铜矿石中铜锌铅硅铝铁钛锰钙钾镁钼铋锑钴镍16种元素的分析方法。分析铜矿石国家标准物质GBW 07164、GBW 07169,各元素的精密度(RSD)为0.1%~5.4%。分析国家标准物质GBW 07163(多金属矿石)、GBW 07170(铜矿石)的测定值与标准值相符;分析实际铜矿石样品,铜锌铅钼铋锑钴镍的测试结果与电感耦合等离子体发射光谱法和其他方法的测定值相符。本文方法扩大了基体的适应性,提高了实际应用价值。  相似文献   

5.
李清彩  赵庆令 《岩矿测试》2014,33(6):839-843
X射线荧光光谱(XRF)分析方法中,采用粉末压片制样存在粒度效应和矿物效应等问题,但当样品在一定的粒度、压制压力及压制时间条件下,矿物效应和粒度效应仅仅对钠、钙等轻元素的测试有影响,而对钼、铜、铅等元素的测试并无影响。基于此本文建立了粉末压片制样波长色散XRF直接测定钼矿石中Mo、W、Cu、Pb、Zn、F、S、As、Bi等9种元素的方法。采用价格低廉的低压聚乙烯粉作衬垫镶边材料,样品在35 t的压力下压制30 s,制备的样片坚固光滑、吸潮性小,长期保存不发生形变,消除了粒度效应。选用自制的钼含量呈梯度变化的钼矿石样品及钼矿石、钨矿石、铜矿石、铅矿石、铋矿石、锌矿石等国家标准物质作为校准样品建立标准曲线,降低了矿物效应,采用经验系数法消除谱线重叠和基体干扰。本方相对标准偏差小于2.1%,各元素的测定结果与电感耦合等离子发射光谱法等其他方法测量值吻合。与已报道的玻璃熔融和粉末压片制样方法相比较,检出限较低,如钼的检出限为3.67 μg/g,比玻璃熔融法的检出限(450 μg/g或24 μg/g)要低得多;砷的检出限为1.13 μg/g,低于其他粉末压片法的检出限(7.8 μg/g)。本方法提出了克服粒度效应及光谱诸干扰因素影响的详细解决方案,有利于XRF法应用于定量分析基体组成复杂的钼矿石。  相似文献   

6.
张晶 《化工矿产地质》2013,(2):111-115,124
使用王水溶矿-电感耦合等离子体发射光谱法同时测定铜铅锌矿石中的铜铅锌。用国家一级标准物质GBW07233(铜矿石成分分析标准物质)、GBW07236(铅矿石成分分析标准物质)、GBW07237(锌矿石成分分析标准物质)和GBW07286(铜铅锌矿石成分分析标准物质)进行验证,测定值与标准值相符,结果准确可靠。方法操作简单,分析快速,提高了分析大批量样品的工作效率。  相似文献   

7.
熊英  王晓雁  胡建平 《岩矿测试》2011,30(3):299-304
文章在修订GB/T 14353—1993《铜矿石、铅矿石和锌矿石化学分析方法》研究工作中,建立了电感耦合等离子体发射光谱同时测定铜铅锌矿石中铜铅锌钴镍等元素的标准分析方法。通过控制试样量和制备试样溶液的体积,可实现主量元素铜、铅、锌与次量元素钴、镍的同时测定。测定范围为铜0.002%~8.5%,铅0.01%~5%,锌0.005%~3%,钴0.001 5%~0.5%,镍0.003%~0.5%。按照相关国家标准对测量方法与结果的准确度进行8个实验室协同参加的准确度试验,统计参数结果表明在限定水平范围内方法偏倚不显著;利用方法重复性限参数,计算可能产生的最大相对偏差。分析方法精密度满足《地质矿产实验室测试质量管理规范》的要求。  相似文献   

8.
电感耦合等离子体发射光谱法测定钼矿石和铜矿石中的铼   总被引:3,自引:0,他引:3  
赵庆令  李清彩 《岩矿测试》2009,28(6):593-594
采用氧化镁-硝酸钠-过氧化氢处理试样,不需分离富集,电感耦合等离子体发射光谱法直接测定钼矿石及铜矿石中的铼,筛选了不同溶矿方法和仪器参数条件。方法检出限为0.014μg/g,相对标准偏差(RSD,n=11)小于5.00%,经国家一级钼矿石及铜矿石标准物质分析验证,结果与标准值吻合。  相似文献   

9.
铅矿石在电感耦合等离子体质谱测定中,元素Pb的双电荷离子206Pb~(2+)干扰内标元素103Rh而影响其他元素的测定结果。本文建立了用~(105)Pd和~(187)Re的混合溶液为内标溶液,封闭酸溶-电感耦合等离子体质谱测定硫化铅矿石中的铍、钪、钛、铬、钴、镍、铜、锌、镓、锗、砷、锑和稀土等40种微量元素分析方法,提高了电感耦合等离子体质谱分析铅矿石中低质量的元素(质量为133Cs以下的元素)测定数据的准确度。通过大量的实验确定了该方法的检出限为0.04~5.00μg/g,对国家一级标准物质GBW07235(铅矿石)、GBW07236(铅矿石)、GBW07286(铜铅锌矿石)、GBW07287(铅锌矿石)、GBW07165(富铅锌矿石)、GBW07172(铅矿石)进行分析测定,其准确度(RE)均小于10%,加标回收率为90%~120%。  相似文献   

10.
钨矿石和钼矿石具有丰富的共生或伴生元素,检测共生或伴生元素的含量有利于矿产资源的综合利用.在国家标准方法中钨矿石和钼矿石的共生或伴生元素含量是按元素分别检测,效率很低.本文在敞开体系中用盐酸+硝酸+氢氟酸+高氯酸消解样品,以7%盐酸溶解盐类,电感耦合等离子体发射光谱同时测定钨矿石和钼矿石中铋、钴、铜、锂、镍、磷、铅、锶、钒、锌等10种微量元素.选定了各元素的分析谱线和光谱级次,采用离峰背景校正法消除背景干扰,干扰元素校正系数法消除元素间的谱线重叠干扰.方法检出限为1.43 ~ 18.8 μg/g,加标回收率为90% ~ 110%.经钨矿石和钼矿石标准物质分析验证,测定结果与标准值基本吻合,方法精密度(RSD,n=10)小于8%.该方法克服了碱熔引入大量碱金属元素以及可能引入杂质的缺陷,又不用处理钨酸和钼酸沉淀,能快速测定钨矿石和钼矿石中微量共生或伴生元素.  相似文献   

11.
贺攀红  杨珍  龚治湘 《岩矿测试》2020,39(2):235-242
土壤中砷的测定方法多采用氢化物发生-原子荧光光谱法(HG-AFS);电感耦合等离子体发射光谱法(ICP-OES)在多元素同时测定方面应用普遍,但测定砷的检出限稍高。氢化物发生技术与ICP-OES两者联用也多有研究,较大幅度降低了砷的检出限,已能实现砷锑铋汞等元素的同时测定。但联用技术只能应用于测定能够发生氢化反应的元素,无法实现易氢化元素和难氢化元素的同时测定。本文通过改进ICP-OES仪器的进样装置,采用氢化反应气与ICP-OES雾化气双管路同时进样的方法,实现了一次溶样、一台设备同步测定样品中的砷和多种金属元素。土壤样品经氢氟酸、硝酸、高氯酸、盐酸溶解后,用10%盐酸提取,用硫脲-抗坏血酸溶液将砷元素预还原为+3价后双流路同时进样测定。对于溶液中共存的离子,高于1.0mg/L的La和Dy对砷测定有干扰;低于50.0mg/L的K、Na、Ca、Mg、Fe,低于20.0mg/L的Pb、Mo、Zn、Cu、Ba、Ti、Mn、Ni、Sr、V、Cr,低于10.0mg/L的Co、Ag、U、Cd、Li、Au对砷测定无影响。本方法提高了砷的测定灵敏度,又充分利用多元素同测的优势,实现了同时测定易氢化的痕量砷和难氢化的铜、铅、锌、镍、钒等元素。方法精密度高(RSD5%),经土壤标准物质验证方法可靠,适合痕量砷与其他元素的同步测定。  相似文献   

12.
采用HCl-HNO3混合酸(体积比1∶1)微波消解铁矿样品,在消解后的样品母液中直接加入硫脲-抗坏血酸,预还原五价砷为三价砷,消除铁和其他共存离子对砷、汞测定的干扰,采用化学蒸气发生-双道原子荧光光谱法同时测定铁矿石中的痕量砷和汞。结果表明5%的HCl-HNO3混合酸(体积比1∶1)、20 g/L硼氢化钾溶液能有效保证砷、汞双元素的同时测定,制备的砷、汞标准使用溶液在2~5℃下密闭保存,在245 d内具有稳定性。砷的检出限为0.085μg/L,汞的检出限为0.008μg/L。通过分析5个铁矿石有证标准物质,测定As的相对标准偏差为0.9%~5.5%,回收率为77.7%~105.4%,检测值与标准值吻合;测定Hg的相对标准偏差为1.1%~3.7%,回收率为86.2%~113.2%。本方法是以牺牲汞元素的检出限来实现砷、汞两元素的同时测定,是建立在砷、汞单独测定基础上的一种快速检测方法,经全国不同地区9家实验室采用5个标准样品进行协同实验验证,能够满足日常分析要求。  相似文献   

13.
石墨炉原子吸收光谱法测定磷矿石中微量铅和铬   总被引:4,自引:2,他引:2  
应用石墨炉原子吸收光谱法测定磷矿石中微量铅和铬,优化了仪器工作参数及石墨炉升温程序,探讨了不同酸溶体系、基体改进剂及共存元素的影响。方法检出限为铅0.25μg/g,铬0.29μg/g;测定结果的相对标准偏差(RSD,n=12)在2.2%~7.0%;加标回收率为93.2%~107.7%。方法灵敏度高,干扰少,操作简便,应用于磷矿石中微量铅、铬的测定获得了满意的结果。  相似文献   

14.
氢化物发生—原子荧光光谱法测定煤样中的硒   总被引:6,自引:2,他引:6  
采用氢化物发生原子荧光光谱法测定了煤样中的总Se。煤样选用高压闷罐强酸消解的方法进行处理,所得消解液经6mol/L HCl将Se(Ⅵ)还原为Se(Ⅳ),然后进行测定。标准工作曲线的线性范围为0-400μg/L Se,检测限为0.4μg/L Se。用标准参考物质煤飞灰对方法进行了验证,所得总Se含量与标准值相符,对ω为10^-6级Se的4次测定,RSD≤4.5%。  相似文献   

15.
刘薇 《岩矿测试》2010,29(6):691-694
研究了原子荧光光谱法测定锌的新体系,针对基体较为复杂的样品,建立了碱性体系-蒸汽发生-原子荧光光谱法测定锌的方法。优化了碱性体系锌蒸汽发生的实验条件及仪器测定的参数,加入镍离子作增敏剂,增强了荧光信号,方法检出限为0.24μg/L,精密度RSD(n=6)小于4.0%,锌的标准曲线线性范围为0.5~800.0μg/L。与传统的酸性体系相比,碱性体系具有更高的灵敏度和更宽的线性范围,并且可以大幅度降低共存元素的干扰。方法应用于国家一级标准物质中锌的分析,测定值与标准值基本吻合,加标回收率为94.1%~101.2%。  相似文献   

16.
对利用铜试金预富集后辉光放电质谱法(GDMS)测定贵金属矿样中痕量Pt、Pd、Ir、Au的方法进行了探索性研究。着重考察了铜试金条件的选择和辉光放电电极的匹配、质谱的测定条件和测定方法等。分析结果表明,痕量(μg级)贵金属元素Pt的含量在1.99~15.0μg,回收率为92.0%~111.9%;Pd的含量在3.15~29.78μg,回收率为88.4%~113.3%;Ir的含量在0.12~0.60μg,回收率为68.3%~100.0%;Au的含量在10.43~24.08μg,回收率为98.9%~127.0%。方法可应用于矿石、矿物及其他物料中痕量贵金属的分析。  相似文献   

17.
氢化物发生-原子荧光光谱法测定铜矿石中的砷锑铋   总被引:1,自引:1,他引:0  
样品经王水溶矿分解,在氨水存在下,以Fe3+作共沉淀剂分离铜后,用氢化物发生-原子荧光光谱法测定铜矿石中的砷、锑、铋。方法检出限为砷0.19μg/g、锑0.052μg/g、铋0.049μg/g;精密度(RSD,n=10)为砷5.87%、锑7.58%、铋2.42%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号