首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
半坡杂岩体位于滇西澜沧江构造岩浆带南段,岩体主要由橄榄岩、辉石岩、辉长岩和辉长闪长岩等镁铁 超镁铁质岩组成。通过ID-TIMS锆石U-Pb年代学方法对半坡杂岩体中辉长闪长岩进行精确定年,获得其结晶年龄为(294.9±2.6) Ma,表明半坡杂岩体的形成时代为早二叠世。半坡杂岩体中不同类型岩石微量元素、稀土元素和同位素组成相似,均呈现轻稀土元素(LREEs)相对于重稀土元素(HREEs)弱到中等富集,高场强元素Nb、Ta、Zr和Hf相对亏损的特征,εNd(t=295 Ma)为正值,在+3.4~+6.6,接近亏损地幔值,这些特征与典型的大洋岛弧玄武岩的特征相似。混合计算表明,半坡杂岩体母岩浆为地幔楔部分熔融,加上约2%~7%源于大洋俯冲沉积物的富硅熔浆和蚀变洋壳流体形成的岛弧玄武质岩浆。上述年龄和同位素数据提供了早二叠世早期南澜沧江地区洋内俯冲的可靠证据。  相似文献   

2.
青海省祁连县扎麻什基性杂岩体侵位于寒武一奥陶纪地层中。岩体以辉长岩为主,并伴有超基性岩,辉石岩,角闪石岩与闪长岩出露。岩石地球化学研究表明,该岩体是由钙碱性岩浆经不同程度的分离结晶作用形成的。岩石具富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),并具有明显Nb和Ta负异常。结合该岩体与北侧清水沟一百经寺俯冲杂岩的空间分布关系,表明该杂岩体是形成于北祁连洋壳向南俯冲形成的岛弧环境。  相似文献   

3.
天水地区关子镇流水沟变质中基性岩浆杂岩主要由变质辉长岩—辉长闪长岩—闪长岩组成,百花变质岩浆杂岩主要由辉石岩—辉长(闪长)岩—闪长岩—石英闪长岩组成,构成较完整的同源岩浆演化序列。基性—中基性岩浆岩的地球化学特征表明其属于拉斑玄武岩系列,稀土元素分布型式呈REE近平坦型—LREE轻微富集型,微量元素原始地幔标准化的蛛网图和MORB标准化蛛网图上的分布型式总体很相似,富集大离子亲石元素(LILE)Cs、Ba、Sr、Th、U而相对亏损Rb、K和高场强元素(HFSE)Nb、P、Zr、Sm、Ti和Y,显示同源岩浆演化成因特征。微量元素构造环境判别显示其形成于岛弧构造环境。关子镇流水沟变质中基性岩浆杂岩的TIMS法锆石U-Pb同位素年龄为(507.5±3.0)Ma,代表了杂岩体的形成时代,表明西秦岭北带岛弧型岩浆岩的形成时代为晚寒武世,同时也揭示出以关子镇蛇绿岩为代表的古洋盆的俯冲作用及产生岛弧型岩浆活动的时限可能为晚寒武世—早奥陶世。  相似文献   

4.
内蒙古乌拉特中旗中蒙边境地区的扎嘎乌苏岩体主要由闪长岩、石英闪长岩、花岗闪长岩和黑云母二长花岗岩组成,岩体及围岩普遍发育面理南倾的糜棱岩带。通过LA-ICP-MS锆石U-Pb测年,获得扎嘎乌苏岩体中黑云母二长花岗岩的结晶年龄为450.3±3.7Ma(MSWD=2.8),表明扎嘎乌苏岩体的形成时代为晚奥陶世。扎嘎乌苏岩体中不同类型岩石全岩微量和稀土元素组成总体相似,均呈现轻稀土元素相对于重稀土元素强烈富集,大离子亲石元素Ba、Sr等富集,高场强元素Nb、Ta、Ti相对亏损,高Sr,低Y、Yb,高Sr/Y、La/Yb值等特征,具有埃达克岩和岛弧岩浆岩的地球化学特征。这些新的年代学和岩石地球化学数据,为索伦山地区晚奥陶世古亚洲洋俯冲消减提供了可靠的证据。  相似文献   

5.
内蒙古狼山山脉西侧分布大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世石英闪长岩体出露于潮格温都尔镇西侧。该岩体岩性为石英闪长岩,LA-ICP-MS锆石U-Pb年龄显示,石英闪长岩的~(206)Pb/~(238)U年龄加权平均值为337.4±6.6 Ma。岩石暗色矿物以角闪石为主,黑云母次之,富铁,富钠,高钠钾比值,为钙碱性系列;富集大离子亲石元素Rb、K、Pb,不同程度的亏损高场强元素Nb、Ta、P、Ti的特点,稀土元素配分型式为轻稀土元素富集,重稀土元素亏损,弱的负Eu异常,总体反映岩浆弧的地球化学特征。构造环境判别图显示样品点落在大陆边缘弧范围,岩石地球化学特征表明狼山地区早石炭世处于大陆边缘弧构造背景,古亚洲洋石炭纪存在向南俯冲。对比北部造山带西乌旗地区的早石炭世石英闪长岩,两者地球化学特征基本相同。因此,早石炭世古亚洲洋发生了双向俯冲,形成了以石英闪长岩为主的岩石类型。  相似文献   

6.
西秦岭天水关子镇地区新确定的流水沟变质中基性岩浆杂岩体主要由变质辉长岩-辉长闪长岩-闪长岩组成,地球化学特征显示其形成于岛弧构造环境。变质中基性岩浆杂岩的TIMS法锆石U-Pb同位素年龄为(507.5±3.0)Ma,表明西秦岭北带岛弧型岩浆岩的形成时代为晚寒武世,反映以关子镇蛇绿岩为代表的古洋盆的俯冲作用和形成火山-岩浆岛弧的时限可能为晚寒武世或稍早。  相似文献   

7.
内蒙古狼山山脉西侧分布有大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世角闪辉长岩、花岗闪长岩体出露于潮格温都尔镇西侧。角闪辉长岩体呈岩滴状产出,被花岗闪长岩体侵入,LA-ICP-MS锆石U-Pb年龄显示,角闪辉长岩的~(206)Pb/~(238)U加权平均年龄为329.0±2.3 Ma,花岗闪长岩的~(206)Pb/~(238)U加权平均年龄为331.1±0.9 Ma~330.0±4.2 Ma。花岗闪长岩暗色矿物以角闪石为主,富钠(Na2O=3.48%~4.46%),高钠钾比值(Na2O/K2O=1.03~2.39),钙碱性系列,P2O5-SiO_2之间存在较好的负相关性,岩石地球化学特征具Ⅰ型花岗岩的特点。Hf同位素及元素地球化学特征指示了角闪辉长岩及花岗闪长岩均来自于受地壳混染的亏损地幔,为同源岩浆演化的产物。角闪辉长岩及花岗闪长岩稀土元素配分型式一致,均为轻稀土元素富集,重稀土元素亏损,具弱的负Eu异常;角闪辉长岩富集Ba、Sr,亏损Nb、Ta、Zr、Hf;花岗闪长岩富集大离子亲石元素Rb、K、Pb、Sr,不同程度地亏损高场强元素Nb、Ta、P、Ti,总体反映了岩浆弧的地球化学特征。结合区域地质背景,早石炭世狼山地区侵入岩岩石组合为角闪辉长岩(闪长岩)+石英闪长岩+花岗闪长岩,认为狼山地区早石炭世处于大陆边缘弧构造背景。  相似文献   

8.
本文以贺根山缝合带呼都格奥长花岗岩体为研究对象,通过野外地质调查和岩石学、地球化学、锆石U-Pb年代学研究,讨论岩石成因、构造环境、TTG岩浆事件及古亚洲洋俯冲消亡过程。岩石地球化学研究表明,呼都格岩体富硅(SiO2=66.27%~71.59%)、高铝(Al2O3=15.23%~15.94%)、富钠(Na2O=4.13%~6.59%)、低钾(K2O=1.72%~2.53%),相对高锶(Sr=196.60×10-6~465.40×10-6)、低钇(Y=5.70×10-6~12.63×10-6),富集Ba、Sr等大离子亲石元素和LREE,亏损Nb、Ta、Ti、P等高场强元素和HREE,无明显Eu异常。岩石学和岩石地球化学特征表明,呼都格岩体属于以奥长花岗岩为主的英云闪长岩-奥长花岗岩-花岗闪长岩TTG岩石组合。这套TTG组合除Sr、Mg、Ni和Cr含量相对较低之外,与高Si埃达克岩的地球化学特征相类似,形成于大洋俯冲带岛弧环境,可能为俯冲洋壳脱水熔融成因。锆石LA-ICP-MS U-Pb测年获得两组年龄为306.3±1.9Ma和315.5±1.9Ma,表明该岩体侵位于晚石炭世,反映了贺根山缝合带晚石炭世大洋俯冲带TTG岩浆事件。结合其与梅劳特乌拉-高力罕蛇绿岩-TTG岩带前弧玄武岩、高镁安山岩/高镁闪长岩、埃达克岩、TTG、富铌弧玄武岩/辉长岩的岩石构造组合,认为古亚洲洋二连-贺根山洋盆在晚石炭世可能处于洋壳俯冲消减、TTG岩浆活动和新生陆壳生长洋陆转换过程中。  相似文献   

9.
青海南山构造带是衔接宗务隆构造带、南祁连构造带和西秦岭造山带的重要结合带。沟后岩浆杂岩体位于青海南山构造带东段,主要由辉长岩、辉长闪长岩、石英闪长岩、花岗闪长岩组成。本文对沟后岩浆杂岩体进行了详细的岩石学、岩石地球化学和LA-ICP-MS锆石U-Pb同位素年代学研究。结果表明,辉长岩、辉长闪长岩、石英闪长岩、花岗闪长岩及暗色微粒包体的结晶年龄分别为248.8±2.6 Ma、243.2±2.1 Ma、243.1±0.9 Ma、244.0±2.1 Ma和249±3 Ma。辉长岩富铁、镁,贫碱;辉长闪长岩高铝、富钙和钠,二者均为钙碱性岩类。石英闪长岩和花岗闪长岩为准铝-弱过铝质高钾钙碱性岩,暗色微粒包体属钙碱性-碱性岩系列。不同岩石类型均表现为富集大离子亲石元素(Cs、Rb、K)和Pb,亏损高场强元素(Nb、Ta、Ti)和P、Ba负异常;稀土元素配分曲线均具有轻重稀土分异的右倾特征,具弱-中等负Eu异常。岩相学和岩石地球化学特征表明沟后岩浆杂岩体具壳幔岩浆混合特征,暗示其可能形成于由俯冲流体交代地幔楔部分熔融的幔源岩浆底侵作用下的构造环境。辉长岩为幔源岩浆经分离结晶的产物,辉长闪长岩为幔源岩浆经分异演化并混染少量壳源岩浆的产物;中基性岩浆与壳源中酸性岩浆发生混合并经历一定的分异演化过程形成了石英闪长岩和花岗闪长岩。结合区域地质资料分析认为,沟后岩浆杂岩体可能代表了研究区早三叠世晚期-中三叠世早期宗务隆洋向南消减作用相关的构造岩浆事件。  相似文献   

10.
大山头南铜镍矿化基性-超基性杂岩体位于北山褶皱带东段,侵位于长城系古硐井群变质岩中。岩相分带明显,主要包括花岗闪长岩-闪长岩相、辉长岩-橄榄苏长辉长岩相和橄榄二辉岩-纯橄岩相。铜镍矿化主要赋存于橄榄二辉岩-纯橄岩相中。岩石化学特征显示K2O、Na2O、TiO2含量较低,Mg#值介于0.74~0.85之间,MgO/FeOT的值介于1.6~3.1之间,属于铁质镁铁-超镁铁岩;AFM图解显示该岩体具拉斑玄武岩的演化趋势;稀土元素总量较低,介于6.37×10-6~37.51×10-6之间;稀土元素标准化配分曲线表现为轻稀土元素稍富集的右倾型,LREE/HREE比值介于3.03~4.11之间,轻重稀土发生了明显的分馏;采用SHRIMP锆石U-Pb方法,获得杂岩体辉长岩中锆石U-Pb年龄为374.3±3 Ma(MSWD=0.92),表明该岩体侵位于中晚泥盆世,与形成大型镍矿床的黑山岩体年龄一致,形成于洋壳俯冲阶段。该年龄的获得不仅对北山乃至中亚造山带地质构造演化具有重要意义,而且也为北山褶皱带东段铜镍找矿提供了新的方向。  相似文献   

11.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

12.
最新的流行病学研究表明,空气中较高浓度的悬浮细颗粒可能对人类的健康有不利的影响。根据该项研究显示,由于心脏病、慢性呼吸问题和肺功能指标恶化而导致死亡率的升高与细尘粒子有关。这些研究结果已经促使欧盟于1999年4月出台了限制空气中二氧化硫、二氧化氮、氧化氮、铅和颗粒物含量的法案(1999/30/EC),对各项指标包括对可吸入PM10颗粒的浓度提出了新的限制性指标。PM10颗粒是指可以通过预分级器分离采集的气体动力学直径小于10μm的细颗粒。目前研究的兴趣重点逐步偏向PM2.5这些更细微颗粒物,PM2.5这种颗粒物对健康有明显的不利影响。在欧盟指令2008/50/EC中,对PM10和PM2.5都提  相似文献   

13.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

14.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

15.
16.
17.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

18.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

19.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号