首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
长江口盐沼土壤有机质更新特征的滩面趋势   总被引:1,自引:0,他引:1  
Characteristics and tidal flat trends of soil organic matter (SOM) turnover were studied for the Chongmingdongtan Salt Marsh in the Yangtze River estuary, based on analyses of stable carbon isotope composition (δ^13C), grain sizes and contents of particulate organic carbon (POC), total nitrogen (TN) and inorganic carbon (TIC) for three cores excavated from high tidal flat, middle tidal flat and bare flat. Results demonstrate that correlations between soil POC contents and δ^13C values of the salt marsh cores were similar to those between soil organic carbon (SOC) contents and δ^13C values of the upper soil layers of mountainous soil profiles with different altitudes. SOM of salt marsh was generally younger than 100 years, and originated mainly from topsoil erosions in catchments of the Yangtze River. Correlations of TN content with C/N ratio, POC content with TIC content and POC content with δ^13C values for the cores suggest that turnover degrees of SOM from the salt marsh are overall low, and trends of SOM turnover are clear from the bare flat to the high tidal flat. Bare flat samples show characteristics of original sediments, with minor SOM turnover. Turnover processes of SOM have occurred and are discernable in the high and middle tidal flats, and the mixing degrees of SOM compartments with different turnover rates increase with evolution of the muddy tidal flat. The exclusive strata structure of alternate muddy laminae and silty laminae originated from dynamic depositional processes on muddy tidal flat was a great obstacle to vertical migration of dissolved materials, and SOM turnover was then constrained. The muddy tidal flat processes exerted direct influences on sequestration and turnover of SOM in the salt marsh, and had great constraints on the spatial and temporal characteristics of SOM turnover of the Chongmingdongtan Salt Marsh in the Yangtze River estuary.  相似文献   

2.
Transport of organic carbon via rivers to estuary is a significant geochemical proc- ess in the global carbon cycle. This paper presents bulk total organic carbon (TOC) from the Dongjiang catchment to the adjacent Humen outlet, and discusses the applicability of 613C and ratio of carbon to nitrogen (C/N) as indicators for sources of organic matter in the surface sediments. Survey results showed that organic carbon concentration in summer were higher than in the winter. An elevated trend of TOC occurred along the river to the Humen outlet in both surveys, and the highest mean values of dissolved and particular organic carbon (DOC-279 μmol L-1 and POC-163μmol L-1) were observed in the urban deltaic region in summer flood flow. Winter samples had a wide range of b'13C and C/N (5-3C -24.6%o to -30.0%o, C/N 4-13), and summer ones varied slightly (8-3C -24.2%o to -27.6%0, C/N 6-18). As results suggest that POC in the three zones of upstream-delta-outlet dominantly came from riverbank soil, phytoplankton and agricultural C3 plants in winter, whereas main sources were from the riverbank and mangrove soil in summer. Moreover, anthropogenic sewage inputs had 11% and 7% contribution to POC in the deltaic and outlet. Transport accompanied with seasonal freshwater variation, phytoplankton production and degradation, and removal be- havior caused variation of organic carbon concentration. The results also discovered that TOC export bulk in Dongjiang was approximately one quarter of Humen flux in the dry flow, and anthropogenic activity significantly impacted the river export contribution.  相似文献   

3.
Transport of organic carbon via rivers to estuary is a significant geochemical process in the global carbon cycle.This paper presents bulk total organic carbon(TOC) from the Dongjiang catchment to the adjacent Humen outlet,and discusses the applicability of δ13C and ratio of carbon to nitrogen(C/N) as indicators for sources of organic matter in the surface sediments.Survey results showed that organic carbon concentration in summer were higher than in the winter.An elevated trend of TOC occurred along the river to the Humen outlet in both surveys,and the highest mean values of dissolved and particular organic carbon(DOC~279 μmol L–1 and POC~163 μmol L–1) were observed in the urban deltaic region in summer flood flow.Winter samples had a wide range of δ13C and C/N(δ13C –24.6‰ to –30.0‰,C/N 4–13),and summer ones varied slightly(δ13C –24.2‰ to –27.6‰,C/N 6–18).As results suggest that POC in the three zones of upstream-delta-outlet dominantly came from riverbank soil,phytoplankton and agricultural C3 plants in winter,whereas main sources were from the riverbank and mangrove soil in summer.Moreover,anthropogenic sewage inputs had 11% and 7% contribution to POC in the deltaic and outlet.Transport accompanied with seasonal freshwater variation,phytoplankton production and degradation,and removal behavior caused variation of organic carbon concentration.The results also discovered that TOC export bulk in Dongjiang was approximately one quarter of Humen flux in the dry flow,and anthropogenic activity significantly impacted the river export contribution.  相似文献   

4.
Based on regionalized variable theory, semivariograms of geo-statistics were used to research the spatial variation of soil properties quantitatively. The results showed that the semivariogram of soil organic matter is best described by spherical model, the best model for semivariograms of soil total N and available K is exponential models and that of available P belongs to linear with sill model. Those soil properties have different spatial correlations respectively, the lag of organic matter is the highest and that of available P is the lowest, the spatial correlation of N and available K belongs to moderate degree. Spatial heterogeneities are different too, the degree of organic matter and total N are higher, the degree of available K is in the next place and that of available P is the lowest. Influenced by the shape, topography and soil of the study area, all isotropies of available P are obvious in all directions while anisotropies of others are manifested. According to the analytical results, supported by GIS, Kriging and IDW methods are applied to describe and analyze the spatial distribution of soil properties. The results indicate that soil organic matter, total N and available K are distributed regularly from northeast to southwest, while available P is distributed randomly.  相似文献   

5.
Vegetation biomass is an important component of terrestrial ecosystem carbon stocks. Grasslands are one of the most widespread biomes worldwideplaying an important role in global carbon cycling. Thereforestudying spatial patterns of biomass and their correlations to environment in grasslands is fundamental to quantifying terrestrial carbon budgets. The Eurasian steppean important part of global grasslandsis the largest and relatively well preserved grassland in the world. In this studywe analyzed the spatial pattern of aboveground biomass(AGB)and correlations of AGB to its environment in the Eurasian steppe by meta-analysis. AGB data used in this study were derived from the harvesting method and were obtained from three data sources(literatureglobal NPP database at the Oak Ridge National Laboratory Distributed Active Archive Center(ORNL)some data provided by other researchers). Our results demonstrated that:(1) as for the Eurasian steppe overallthe spatial variation in AGB exhibited significant horizontal and vertical zonality. In detailAGB showed an inverted parabola curve with the latitude and with the elevationwhile a parabola curve with the longitude. In additionthe spatial pattern of AGB had marked horizontal zonality in the Black Sea-Kazakhstan steppe subregion and the Mongolian Plateau steppe subregionwhile horizontal and vertical zonality in the Tibetan Plateau alpine steppe subregion.(2) Of the examined environmental variablesthe spatial variation of AGB was related to mean annual precipitation(MAP)mean annual temperature(MAT)mean annual solar radiation(MAR)soil Gravel contentsoil p H and soil organic content(SOC) at the depth of 0–30 cm. NeverthelessMAP dominated spatial patterns of AGB in the Eurasian steppe and its three subregions.(3) A Gaussian function was found between AGB and MAP in the Eurasian steppe overallwhich was primarily determined by unique patterns of grasslands and environment in the Tibetan Plateau. AGB was significantly positively related to MAP in the Black Sea-Kazakhstan steppe subregion(elevation 3000 m)the Mongolian Plateau steppe subregion(elevation 3000 m) and the surface(elevation ≥ 4800 m) of the Tibetan Plateau. Neverthelessthe spatial variation in AGB exhibited a Gaussian function curve with the increasing MAP in the east and southeast margins(elevation 4800 m) of the Tibetan Plateau. This study provided more knowledge of spatial patterns of AGB and their environmental controls in grasslands than previous studies only conducted in local regions like the Inner Mongolian temperate grasslandthe Tibetan Plateau alpine grasslandetc.  相似文献   

6.
中国亚热带地区造林对土壤碳周转的影响   总被引:5,自引:1,他引:4  
Afforestation in China’s subtropics plays an important role in sequestering CO2 from the atmosphere and in storage of soil carbon (C). Compared with natural forests,plantation forests have lower soil organic carbon (SOC) content and great potential to store more C. To better evaluate the effects of afforestation on soil C turnover,we investigated SOC and its stable C isotope (δ13C) composition in three planted forests at Qianyanzhou Ecological Experimental Station in southern China. Litter and soil samples were collected and analyzed for total organic C,δ13C and total nitrogen. Similarly to the vertical distribution of SOC in natural forests,SOC concentrations decrease exponentially with depth. The land cover type (grassland) before plantation had a significant influence on the vertical distribution of SOC. The SOC ?13C composition of the upper soil layer of two plantation forests has been mainly affected by the grass biomass 13C composition. Soil profiles with a change in photosynthetic pathway had a more complex 13C isotope composition distribution. During the 20 years after plantation establishment,the soil organic matter sources influenced both the δ13C distribution with depth,and C replacement. The upper soil layer SOC turnover in masson pine (a mean 34% of replacement in the 10 cm after 20 years) was more than twice as fast as that of slash pine (16% of replacement) under subtropical conditions. The results demonstrate that masson pine and slash pine plantations cannot rapidly sequester SOC into long-term storage pools in subtropical China.  相似文献   

7.
Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches. Selecting Kaifeng and Zhoukou as typical cases of the Yellow River flooding area, the field survey, soil sample collection, laboratory experiment and Geographic Information System(GIS) spatial analysis methods were applied to study the spatial distribution characteristics and change mechanism of organic carbon components at different soil depths. The results revealed that the soil total organic carbon(TOC), active organic carbon(AOC) and nonactive organic carbon(NOC) contents ranged from 0.05–30.03 g/kg, 0.01–8.86 g/kg and 0.02–23.36 g/kg, respectively. The TOC, AOC and NOC contents in the surface soil layer were obviously higher than those in the lower soil layer, and the sequence of the content and change range within a single layer was TOCNOCAOC. Geostatistical analysis indicated that the TOC, AOC and NOC contents were commonly influenced by structural and random factors, and the influence magnitudes of these two factors were similar. The overall spatial trends of TOC, AOC and NOC remained relatively consistent from the 0–20 cm layer to the 20–100 cm layer, and the transition between high-and low-value areas was obvious, while the spatial variance was high. The AOC and NOC contents and spatial distribution better reflected TOC spatial variation and carbon accumulation areas. The distribution and depth of the sediment, agricultural land-use type, cropping system, fertilization method, tillage process and cultivation history were the main factors impacting the spatial variation in the soil organic carbon(SOC) components. Therefore, increasing the organic matter content, straw return, applying organic manure, adding exogenous particulate matter and conservation tillage are effective measures to improve the soil quality and attain sustainable agricultural development in the alluvial/sedimentary zone of the Yellow River.  相似文献   

8.
Estimation of soil organic carbon reservoir in China   总被引:6,自引:0,他引:6  
1 IntroductionResearch on global change has aroused many scientists' attention to the balance, storage and spatial distribution of carbon in the terrestrial ecosystem. The carbon stored in soil is 2.5-3 times as much as that stored in plants[1,2], so the distribution and conversion of carbon in humus has become one of the global research foci on organic carbon at present[3]. Organic carbon and nitrogen contents in soils are not only important components of soils but also the most important eco…  相似文献   

9.
The Bohai Rim region is one the most important bases for commodity grain pro-duction in China.With the rapid pace of agricultural industrialization,nitrogenous fertilizer has been used at an ever increasing rate,which resulted in the trace of accumulative nitrogen in the soil and caused serious environmental problems.In this study we made use of the farm-land nitrogen balance model to assess the spatial difference of farmland nitrogen nutrient budget in the Bohai Rim region in 2008 with the assistance of GIS.Our results indicated that:1) Farmland in this region has a nitrogen surplus totaling 5.0822 million tons,or an average of 288.54 kg/ha.2) In the Bohai Rim region,farmland nitrogen input and farmland nitrogen budget both show a spatial differentiation.Major grain-producing areas have a higher nitrogen input than that of the grazing-farming areas.The main sources of nitrogen input include chemical fertilizer,organic fertilizer,deposition from atmospheric drying and wetting,and biological fixation,which account for 79.47%,9.53%,4.62%,and 3.58% of the total input,respectively.Therefore,chemical fertilizer is the predominant source of nitrogen input to farmland.3) A total of 3.3398 million tons of nitrogen were output from the farmland via har-vested crops and it accounts for 52.36% of the total nitrogen output from farmland in this region.On average,the amount of nitrogen output from unit farmland is equal to 176.65kg/ha.This study has shed light on farmland nitrogen budget and its spatial variation in the study area,may provide scientific evidences for rationalizing the use of chemical fertilizer and managing agricultural operation on the regional scale and is also valuable for improving the economic and ecological efficiency of fertilizer use at the regional scale.  相似文献   

10.
Soil is the largest carbon pool of terrestrial ecosystem, and its carbon content accounts for two thirds of the whole terrestrial ecosystem (Schlesinger, 1990). The soil organic matter (SOM) content and turnover rate exert impacts directly on the terrestrial ecosystem and global carbon cycles. Nitrogen is the main limiting factor constraining the plant growth (Vitousek etal., 1997; Pamela etal., 2002). Changes of the nitrogen content will change the microbial respiration through changing the…  相似文献   

11.
长江口外海域沉积物中有机物的来源及分布   总被引:10,自引:0,他引:10  
通过分析长江口外海域不同区域有机碳和氮的分布特征及其影响因素,了解了底部沉 积物中有机碳和氮同位素的生物地球化学特征,探讨二者对长江口外海域底部沉积物中有机 物来源的指示意义。运用质量混合模型,计算了长江输入的陆源有机物的贡献及其空间变化。结果表明,长江口外海域沉积物中TOC 和TN 的分布和东海陆架的环流体系有着密切关系, 与环流的分布相对应,如果大致沿31oN 和123oE 作为分界线, 整个研究区的TOC 和TN 的分布可划分为4 个具有不同分布特征的区域。TOC、TN、δ13C 和δ15N 分别与沉积物的平均粒 径呈线性相关关系,因此,粒度效应是控制长江口外海域沉积物中有机物分布和稳定同位素 碳、氮的一个重要因素。研究区内的C/N 比值能够在一定程度上体现有机物的来源信息,但δ15N 表现出了与C/N 和δ13C 不同的区域分布和变化特征。陆源有机物来源比重较高的区域与 长江口外海域赤潮突发频率最高的地区相对应。长江口附近沉积物中的陆源有机物来源最高, 超过了50%,且等值线呈舌状向东北方向凸出,表明了长江冲淡水的影响。陆源颗粒态有机物沉海底后,要不断经历早期成岩作用和生物作用,因此在在相同地点,陆源有机物对沉积物中有机物的贡献,要明显小于对悬浮颗粒态有机物的贡献。  相似文献   

12.
The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distribu-tions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus “grain size effect” is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distri-bution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton, after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to par-ticulate organic matter is obviously greater than that to organic matter in sediments in the same place.  相似文献   

13.
长江口潮滩有机质来源的C、N稳定同位素示踪   总被引:25,自引:0,他引:25  
依据长江河口潮滩自然环境特征和受人文活动影响的差异性,沿长江河口南岸潮滩选取了12个典型的监测站位,并分别于洪水季节 (7月份) 和枯水季节 (2月份) 在各监测站位进行了表层 (0~2 cm) 沉积物样品的采集。对表层沉积物有机质中稳定碳、氮同位素进行分析与测试发现,7月份稳定碳同位素值普遍低于2月份的稳定碳同位素值,其变化范围分别为 -29.8‰ ~ -23.7‰和-27.3‰ ~ -25.6‰;7月份和2月份稳定氮同位素分别为1.0‰ ~ 5.5‰和1.7‰~ 7.8‰。研究区域内,稳定碳、氮同位素的地区分布和季节变化特征揭示,有机质中的稳定碳、氮同位素组成不仅受陆源和海源有机质输入量之间消长变化的影响,同时一系列的生物地球化学过程、人为有机质的输入和沉积物粒度与叶绿素对碳、氮同位素组成均存在不同程度的改造作用。此外,利用稳定碳同位素质量平衡混合模型,还对陆源有机质输入量的贡献率进行了初步定量估算。  相似文献   

14.
西江河口段溶解无机碳稳定同位素组成的时空变化   总被引:3,自引:1,他引:2  
For researching the spatio-temporal variation of the stable isotopic composition of the riverine dissolved inorganic carbon(DIC),we had carried out a survey throughout the hydrologic year during which theδ^13CDIC of the surface water and its physicochemical parameter were examined along the Xijiang River Inner Estuarine waterway from September 2006 to June 2007.There was a striking seasonal variation on the averageδ^13CDIC,as the averageδ^13CDIC in summer(-13.91‰)or autumn(-13.09‰)was much less than those in spring(-11.71‰)or winter(-12.26‰).The riverineδ13C DIC was controlled by decomposed condition of the riverine organic matter linking the seasonal variation of the physicochemical parameter in the surface water according to the correlation analysis which indicated notable relations betweenδ^13CDIC and water temperature(p=0.000;r=-0.569)or betweenδ^13CDIC and oxide-reduction potential(p=0.000;r=0.646).The striking positive correlation between δ^13CDIC and the sampling distance happened in the summer rainy season,while striking negative correlation happened in the spring dry season,indicating that river-sea interaction influenced water physicochemical parameters and controlled the riverine DIC property in the survey waterway.In view of the riverineδ^13CDIC decreasing for the decomposition of the terrestrial organic matter in the rainy season in summer and increasing for the briny invaded zone extending in the spring dry season along the waterway from the Makou gauging station to the Modaomen outlet,theδ^13CDIC spatio-temporal variation was closely related to the geographical environment of the Xijiang drainage basin.  相似文献   

15.
Land use change plays an important part in the studies of global environmental change and regional sustainable development. The change of soil quality can particularly reflect the impacts of human socio-economic activities on environment. Taking the coastal plain of south Hangzhou Bay as a study case, we analyzed the effects of land use changes on organic matter (OM), total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), available potassium (AK), total salinity (TS), pH value in soil genetic layers, and assessed soil quality change related to different land use types from 1982 to 2003. The results show that: (1) The general change tendency of soil quality in the coastal plain of south Hangzhou Bay declined obviously in A layer and slightly rise in B (or P) layer and C (or W) layer. The contents of TP decreased generally in all soil genetic layers, but the variety difference of other soil quality indices was relatively great. (2) The change of soil quality in the areas where land use changed is far more remarkable than that with land use unchanged. The value of quality variety is A layer 〉B (or P) layer 〉C (or W) layer. (3) The changes of soil tillage, cultivation, fertilization, irrigation and drainage activities related to land use may make some soil-forming processes disappeared and bring in other new processes which will affect the soil quality and soil genetic layers directly.  相似文献   

16.
排灌系统底泥特征是反映土地利用变化生态影响的重要途径,为此对内蒙古河套灌区永济灌域灌排系统底泥有机碳和总氮含量进行了系统研究。结果表明:灌域内永济给水干渠(简称永济干渠)与四号、五号排水干沟(简称四排干、五排干)表层底泥的有机质(OM)及总氮(TN)含量特征分布有所差异。其中均以五排干上游底泥中含量最高,OMTN平均值分别为3.60%和0.35%,超出河套地区平均值的4.82倍和2.94倍;其底泥有机指数也达到重污染水平,富营养化程度较高;永济干渠底泥OM与TN含量最低,分别为1.41%和0.03%,属于清洁贫营养化级别;四排干底泥OM与TN含量介于五排干和永济干渠之间,其上游较为清洁,基本接近平均值,C/N平均在17左右。排干底泥有机质与总氮含量之间显著相关,y(TN)=0.141x(OM)-0.180(r=0.978;P<0.001)。  相似文献   

17.
长江口潮滩有机质稳定碳同位素时空分布与来源分析   总被引:5,自引:0,他引:5  
通过测定长江口潮滩悬浮颗粒有机质和表层沉积有机质在枯水季节 (2006年2月 )和洪水季节 (2006年8月 )的稳定碳同位素值,对有机质潜在来源及局部岸段改造作用进行了分析。结果显示,悬浮颗粒有机质稳定碳同位素值在2月明显低于8月,变化范围分别在-25.8‰~-23.4‰和-25.1‰~-22.9‰,主要是受径流量枯洪季变化和浮游生物生长季节变化两种因素的叠加作用。表层沉积有机质2月和8月的稳定碳同位素分别为-25.0‰~-20.4‰和-24.7‰~-19.5‰,季节变化不明显,主要来自悬浮颗粒物的沉降。除受大背景环境因素影响,局部环境对潮滩有机质也有一定的改造作用,污水、支流河水的输入对悬浮颗粒有机质碳同位素有一定的影响,埋藏的潮滩植物和底栖微藻则对沉积有机质有部分贡献。  相似文献   

18.
Stable carbon and nitrogen isotope ratios have been determined on 41 strains ofArtemia sp. from different geographic regions around the world. The δ13C and δ15N values ranged between −13.7 to−25.0 per mil and −0.7 to 21.2 per mil respectively.Artemia δ13C values from coastal environments are consistent with a marine origin for the food sourceArtemia from inland salt lakes have a range of carbon isotope values suggesting C3, C4 and CAM based organic matter could form the base of theArtemia food chain. These data indicate thatArtemia having a wide range of carbon and nitrogen isotope values are available for tropho-dynamic research studies that quantify the effect of respired CO2 on tissue and CaCO3 shell13C/12C ratios. Such stable isotope variation also suggests that stable isotope fingerprinting remains a viable technique for identifying specificArtemia collection sites.  相似文献   

19.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号