首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   13篇
测绘学   2篇
大气科学   50篇
地球物理   85篇
地质学   117篇
海洋学   32篇
天文学   89篇
自然地理   36篇
  2022年   4篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   8篇
  2017年   13篇
  2016年   6篇
  2015年   7篇
  2014年   11篇
  2013年   13篇
  2012年   13篇
  2011年   25篇
  2010年   15篇
  2009年   26篇
  2008年   17篇
  2007年   19篇
  2006年   14篇
  2005年   22篇
  2004年   8篇
  2003年   15篇
  2002年   10篇
  2001年   14篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   8篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   11篇
  1981年   3篇
  1979年   4篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有411条查询结果,搜索用时 343 毫秒
61.
We present integral field spectroscopy of the nebular line emission in a sample of nine brightest cluster galaxies (BCGs). The sample was chosen to probe both cooling flow and non-cooling flow clusters, as well as a range of cluster X-ray luminosities. The line emission morphology and velocity gradients suggest a great diversity in the properties of the line emitting gas. While some BCGs show evidence for filamentary or patchy emission (Abell 1060, Abell 1668 and MKW 3s), others have extended emission (Abell 1204, Abell 2199), while still others have centrally concentrated emission (Abell 2052). We examine diagnostic line ratios to determine the dominant ionization mechanisms in each galaxy. Most of the galaxies show regions with active galactic nucleus like spectra, however, for two BCGs, Abell 1060 and Abell 1204, the emission line diagnostics suggest regions which can be described by the emission from young stellar populations. The diversity of emission-line properties in our sample of BCGs suggests that the emission mechanism is not universal, with different ionization processes dominating different systems. Given this diversity, there is no evidence for a clear distinction of the emission-line properties between cooling flow and non-cooling flow BCGs. It is not always cooling flow BCGs which show emission (or young stellar populations), and non-cooling flow BCGs which do not.  相似文献   
62.
Despite reduced anthropogenic deposition during the last decades, deposition sulphate may still play an important role in the biogeochemical cycles of S and many catchments may act as net sources of S that may remain for several decades. The aim of this study is to elucidate the temporal and spatial dynamics of both SO42− and δ34SSO4 in stream water from catchments with varying percentage of wetland and forest coverage and to determine their relative importance for catchment losses of S. Stream water samples were collected from 15 subcatchments ranging in size from 3 to 6780 ha, in a boreal stream network, northern Sweden. In forested catchments (<2% wetland cover) S-SO42− concentrations in stream water averaged 1.7 mg L−1 whereas in wetland dominated catchments (>30% wetland cover) the concentrations averaged 0.3 mg L−1. A significant negative relationship was observed between S-SO42− and percentage wetland coverage (r2 = 0.77, p < 0.001) and the annual export of stream water SO42− and wetland coverage (r2 = 0.76, p < 0.001). The percentage forest coverage was on the other hand positively related to stream water SO42− concentrations and the annual export of stream water SO42− (r2 = 0.77 and r2 = 0.79, respectively). The annual average δ34SSO4 value in wetland dominated streams was +7.6‰ and in streams of forested catchments +6.7‰. At spring flood the δ34SSO4 values decreased in all streams by 1‰ to 5‰. The δ34SSO4 values in all streams were higher than the δ34SSO4 value of +4.7‰ in precipitation (snow). The export of S ranged from 0.5 kg S ha−1 yr−1 (wetland headwater stream) to 3.8 kg S ha−1 yr−1 (forested headwater stream). With an average S deposition in open field of 1.3 kg S ha−1 yr−1 (2002-2006) the mass balance results in a net export of S from all catchments, except in catchments with >30% wetland. The high temporal and spatial resolution of this study demonstrates that the reducing environments of wetlands play a key role for the biogeochemistry of S in boreal landscapes and are net sinks of S. Forested areas, on the other hand were net sources of S.  相似文献   
63.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   
64.
65.
66.
67.
We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 °C and three levels of atmospheric CO2 concentration ([CO2]) – 365 (no CO2 fertilization effect), 560 and 750 ppm – on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for the primary (current) U.S. growing regions of each crop. This analysis is a subset of the Global Change Assessment Model (GCAM) which has the goal of integrating the linkages and feedbacks among human activities and resulting greenhouse gas emissions, changes in atmospheric composition and resulting climate change, and impacts on terrestrial systems. A set of representative farms was designed for each of the primary production regions studied and the Erosion Productivity Impact Calculator (EPIC) was used to simulate crop response to climate change. The GCMs applied were the Goddard Institute of Space Studies (GISS), the United Kingdom Meteorological Transient (UKTR) and the Australian Bureau of Meteorological Research Center (BMRC), each regionalized by means of a scenario generator (SCENGEN). The GISS scenarios have the least impact on corn and wheat production, reducing national potential production for corn by 6% and wheat by 7% at a GMT of 2.5 °C and no CO2 fertilization effect; the UKTR scenario had the most severe impact on wheat, reducing production by 18% under the same conditions; BMRC had the greatest negative impact on corn, reducing production by 20%. A GMT increase of 1.0°C marginally decreased corn and wheat production. Increasing GMT had a detrimental impact on both corn and wheat production, with wheat production suffering the greatest losses. Decreases for wheat production at GMT 5.0 and [CO2] = 365 ppm range from 36% for the GISS to 76% for the UKTR scenario. Increases in atmospheric [CO2] had a positive impact on both corn and wheat production. AT GMT 1.0, an increase in [CO2] to 560 ppm resulted in a net increase in corn and wheat production above baseline levels (from 18 to 29% for wheat and 2 to 5% for corn). Increases in [CO2] help to offset yield reductions at higher GMT levels; in most cases, however, these increases are not sufficient to return crop production to baseline levels.  相似文献   
68.
Space-borne observations reveal that 20–40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative–convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.  相似文献   
69.
The anomalous polymict ureilite Almahata Sitta (AhS) fell in 2008 when asteroid 2008 TC3 disintegrated over Sudan and formed a strewn field of disaggregated clasts of various ureilitic and chondritic types. We studied the petrology and oxygen isotope compositions of enstatite meteorite samples from the University of Khartoum (UoK) collection of AhS. In addition, we describe the first bona fide (3.5 mm-sized) clast of an enstatite chondrite (EC) in a typical polymict ureilite, Northwest Africa (NWA) 10657. We evaluate whether 2008 TC3 and typical polymict ureilites have a common origin, and examine implications for the history of enstatite meteorite asteroids in the solar system. Based on mineralogy, mineral compositions, and textures, the seven AhS EC clasts studied comprise one EHa3 (S151), one ELb3 (AhS 1002), two EHb4-5 (AhS 2012, AhS 26), two EHb5-6 or possibly impact melt rocks (AhS 609, AhS 41), and one ELb6-7 (AhS 17), while the EC clast in NWA 10657 is EHa3. Oxygen isotope compositions analyzed for five of these are similar to those of EC from non-UoK collections of AhS, and within the range of individual EC meteorites. There are no correlations of oxygen isotope composition with chemical group or subgroup. The EC clasts from the UoK collection show the same large range of types as those from non-UoK collections of AhS. The enstatite achondrite, AhS 60, is a unique type (not known as an individual meteorite) that has also been found among non-UoK AhS samples. EC are the most abundant non-ureilitic clasts in AhS but previously were thought to be absent in typical polymict ureilites, necessitating a distinct origin for AhS. The discovery of an EC in NWA 10657 changes this. We argue that the types of materials in AhS and typical polymict ureilites are essentially similar, indicating a common origin. We elaborate on a model in which AhS and typical polymict ureilites formed in the same regolith on a ureilitic daughter body. Most non-ureilitic clasts are remnants of impactors implanted at ~50–60 Myr after CAI. Differences in abundances can be explained by the stochastic nature of impactor addition. There is no significant difference between the chemical/petrologic types of EC in polymict ureilites and individual EC meteorites. This implies that fragments of the same populations of EC parent bodies were available as impactors at ~50–60 Myr after CAI and recently. This can be explained if materials excavated from various depths on EC bodies at ~50–60 Myr after CAI were reassembled into mixed layers, leaving relatively large bodies intact to survive 4 billion years. Polymict ureilites record a critical timestep in the collisional and dynamical evolution of the solar system, showing that asteroids that may have accreted at distant locations had migrated to within proximity of one another by 50–60 Myr after CAI, and providing constraints on the dynamical processes that could have caused such migrations.  相似文献   
70.
The vast majority of microorganisms in aquifers live as biofilms on sediment surfaces, which presents significant challenges for sampling as only the suspended microbes will be sampled through normal pumping. The use of a down-well low frequency sonicator has been suggested as a method of detaching microbes from the biofilm and allowing rapid sampling of this community. We developed a portable, easy to use, low-frequency electric sonicator and evaluated its performance for a range of well depths (tested up to 42 m below ground level) and casing types. Three sonicators were characterized in laboratory experiments using a 1 m long tank filled with pea gravel. These included a commercially available pneumatic sonicator, a rotating flexible shaft sonicator, and the prototype electric sonicator. The electric sonicator detached between 56 and 74% of microbes grown on gravel-containing biobags at distances ranging between 2 and 50 cm from the sonicator. The field testing comprises of a total of 55 sampling events from 48 wells located in 4 regions throughout New Zealand. Pre- and post-sonication samples showed an average 33 times increase in bacterial counts. Microbial sequence data showed that the same classes are present in pre- and post-sonicated samples and only slight differences were seen in the proportions present. The sampling process was rapid and the significant increases in bacterial counts mean that microbial samples can be quickly obtained from wells, which permits more detailed analysis than previously possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号