首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   41篇
  国内免费   7篇
测绘学   10篇
大气科学   52篇
地球物理   235篇
地质学   286篇
海洋学   39篇
天文学   129篇
综合类   2篇
自然地理   31篇
  2023年   4篇
  2022年   4篇
  2021年   18篇
  2020年   26篇
  2019年   22篇
  2018年   37篇
  2017年   49篇
  2016年   65篇
  2015年   43篇
  2014年   48篇
  2013年   49篇
  2012年   37篇
  2011年   47篇
  2010年   36篇
  2009年   46篇
  2008年   39篇
  2007年   35篇
  2006年   19篇
  2005年   17篇
  2004年   11篇
  2003年   11篇
  2002年   12篇
  2001年   8篇
  2000年   11篇
  1999年   2篇
  1998年   9篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1984年   3篇
  1983年   8篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
41.
42.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
43.
Photogrammetry represents a non-destructive, cost-effective tool for coral reef monitoring, able to integrate traditional remote sensing techniques and support researchers’ work. However, its application to submerged habitats is still in early stage. We present new ways to employ Structure from Motion techniques to infer properties of reef habitats. In particular, we propose the use of Digital Surface Models and Digital Terrain Models for assessing coral colonies extension and height and discriminating between seabed and coral cover. Such information can be coupled with digital rugosity estimates to improve habitat characterization. DTM, DSM and orthophotos were derived and used to compute a series of metrics like coral morphologies, reef topography, coral cover and structural complexity. We show the potentialities offered by underwater photogrammetry and derived products to provide useful basic information for marine habitat mapping, opening the possibility to extend these methods for large-scale assessment and monitoring of coral reefs.  相似文献   
44.
Surface wave interaction with aquatic vegetation appears to play a key role in coastal hydro-morpho-dynamics. As an example, the presence of a dense meadow at intermediate water depth is usually associated with a stable and resilient shore. Wave-meadow interactions are investigated here by means of physical modelling, with a focus on wave height distribution and hydrodynamics. The central part of a wave flume is covered by flexible artificial seagrass, composed of polyethylene leaves. This vegetation is tested in both near emergent and submerged conditions. The wave height reduction is evaluated by means of a drag coefficient defined from linear wave theory, which contains all the unknowns of the adopted methodology. The behaviour of such a coefficient is investigated as a function of a wave related Reynolds number. The influence of the flexibility of the leaves is also considered, together with a wave frequency parameter. The results show a complex behaviour with three different trends for near rigid, intermediate or highly flexible leaves. Amplitudes of the orbital velocities are investigated and show a fairly good match with the linear wave theory. On the contrary, the mean velocity along the water column appears to be modified by the seagrass for submerged leaves.  相似文献   
45.
In the present paper some numerical simulations and experiments were carried out to study jet-wall interaction in shallow waters. Namely, modifications of the hydrodynamic field concerning the interaction of river run-off with a shallow coastal water body, due to the presence of marine structures, were investigated. Stratification effects due to salinity and temperature were neglected, and the interest was focused on barotropic features (Coanda effect). The numerical analysis was carried out by means of shallow water equations, numerically solved by finite difference, and the present method was validated by means of a typical simple-shaped test case. The experiments were carried out in a shallow water tank, flow visualizations were performed, and the velocity field was obtained by PIV. The main features of jet-wall interaction flow were investigated in simple-shaped geometries, and applications were shown for two practical cases: Pescara channel harbour (Adriatic Sea, Italy) and the proposed design of Latina harbour (Tyrrhenian Sea, Italy).  相似文献   
46.
47.
Using alternative independent variables in lieu of time has important advantages when propagating the partial derivatives of the trajectory. This paper focuses on spacecraft relative motion, but the concepts presented here can be extended to any problem involving the variational equations of orbital motion. A usual approach for modeling the relative dynamics is to evaluate how the reference orbit changes when modifying the initial conditions slightly. But when the time is a mere dependent variable, changes in the initial conditions will result in changes in time as well: a time delay between the reference and the neighbor solution will appear. The theory of asynchronous relative motion shows how the time delay can be corrected to recover the physical sense of the solution and, more importantly, how this correction can be used to improve significantly the accuracy of the linear solutions to relative motion found in the literature. As an example, an improved version of the Clohessy-Wiltshire (CW) solution is presented explicitly. The correcting terms are extremely compact, and the solution proves more accurate than the second and even third order CW equations for long propagations. The application to the elliptic case is also discussed. The theory is not restricted to Keplerian orbits, as it holds under any perturbation. To prove this statement, two examples of realistic trajectories are presented: a pair of spacecraft orbiting the Earth and perturbed by a realistic force model; and two probes describing a quasi-periodic orbit in the Jupiter-Europa system subject to third-body perturbations. The numerical examples show that the new theory yields reductions in the propagation error of several orders of magnitude, both in position and velocity, when compared to the linear approach.  相似文献   
48.
Hyperspectral imaging is an ubiquitous technique in solar physics observations and the recent advances in solar instrumentation enabled us to acquire and record data at an unprecedented rate. The huge amount of data which will be archived in the upcoming solar observatories press us to compress the data in order to reduce the storage space and transfer times. The correlation present over all dimensions, spatial, temporal and spectral, of solar data-sets suggests the use of a 3D base wavelet decomposition, to achieve higher compression rates. In this work, we evaluate the performance of the recent JPEG2000 Part 10 standard, known as JP3D, for the lossless compression of several types of solar data-cubes. We explore the differences in: a) The compressibility of broad-band or narrow-band time-sequence; I or V Stokes profiles in spectropolarimetric data-sets; b) Compressing data in [x,y, λ] packages at different times or data in [x,y,t] packages of different wavelength; c) Compressing a single large data-cube or several smaller data-cubes; d) Compressing data which is under-sampled or super-sampled with respect to the diffraction cut-off.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号