首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
  国内免费   1篇
测绘学   6篇
大气科学   17篇
地球物理   18篇
地质学   35篇
海洋学   30篇
天文学   2篇
综合类   2篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   11篇
  2017年   6篇
  2016年   9篇
  2015年   7篇
  2014年   12篇
  2013年   10篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2009年   10篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2001年   2篇
  2000年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有111条查询结果,搜索用时 171 毫秒
21.
The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000–2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate model simulated future projections, when information on precipitation extremes need to be reliable as they are highly crucial for adaptation and mitigation.  相似文献   
22.
The Daeri Member, a Cretaceous volcanic–sedimentary succession, can be divided into lower, middle, and upper parts based on vertical changes in its lithologic characters. The lower Daeri Member is composed of siliciclastic deposits formed in a semi‐arid floodplain environment, which is overlain by the middle Daeri Member consisting mainly of andesite lava flow. After the emplacement of the andesite, activities of intrabasinal normal faults created accommodation on hanging wall blocks together with the development of intrabasinal topographic relief. The upper Daeri Member occurs only in hanging wall blocks and is composed of rhyolitic volcaniclastic sediments formed during an explosive volcanic eruption. Following the eruption, owing to semi‐arid climatic conditions and the destruction of vegetation, the eruptive materials were easily remobilized and deposited by episodic sediment gravity flows, resulting in deposition of the resedimented volcaniclastic deposits with sheet‐like geometry. Away from the intrabasinal normal faults, the resedimented volcaniclastic deposits show a decrease in grain size together with changes in inferred depositional processes from debris flows to hyperconcentrated flows and supercritical sheetfloods. This suggests that the resedimented volcaniclastic deposits were stacked on alluvial fan environments induced by intrabasinal topographic relief associated with normal fault activities. In addition, episodic movement of the faults gave rise to periodic fluctuation of the accommodation and an increase in gradient of the alluvial fan surface, resulting in the development of coarsening‐upward trends in the resedimented volcaniclastic deposits. The development of the alluvial fan and the coarsening‐upward trends indicate that dynamic tectonic subsidence and concomitant changes in the intrabasinal physiographic relief influenced the depositional processes and sizes of the transported volcaniclastic sediments of the upper Daeri Member. Thus, it is necessary to carefully observe tectonic signatures in volcaniclastic successions, particularly the syneruptive lithofacies, in order to reconstruct the tectonic and volcanic histories of receiving basins.  相似文献   
23.
Hwang  Sooncheol  Son  Sangyoung  Lee  Chilwoo  Yoon  Hyun-Doug 《Natural Hazards》2020,104(2):1389-1411
Natural Hazards - Future storm-induced inundation risks were assessed by performing storm surge modeling based on Typhoon Maemi (2003) under the generic climate change scenarios proposed by IPCC...  相似文献   
24.
This research was conducted at Samrak Park Delta of Nakdong River Basin in Busan Metropolitan City, Korea. The main objective of this study was to evaluate the interrelationship of geochemical elements in sediments and groundwater through multivariate statistical analyses and a multilayer perceptron artificial neural network model. The mean concentrations of chemical elements were Si (46%), Fe (16.9%), Al (15.7%), K (7.5%) and Ca (4.5%) in sediments, and Na (8650 mg/L), Mg (999 mg/L), Ca (432 mg/L), K (293 mg/L) and Cl (17,640 mg/L) in groundwater, respectively. The principal component analysis produced 3 kinds of factors with the variances of 63.37, 27.02 and 9.62%, respectively. It is suggested that the chemical components of sediments and groundwater were mainly originated from source rocks and seawater intrusion, with the minor impacts of irrigation and industry. Cluster analysis also showed that chemical elements were mainly controlled by the natural geogenic sources and seawater intrusion. Multilayer perceptron of artificial neural network (ANN) presented the good interrelationship between sediment and groundwater. The determination coefficients (R 2) between ANN predicted values and observed values in groundwater showed the high values of 0.61–0.97 except Mg, Mn and Sr. It is revealed that the chemical components of sediment and groundwater were derived from local geological origin and from the minor impact of anthropogenic sources. Multivariate analyses and ANN contributed to the identification of the mutual relationship between the geochemical elements of sediment and those of groundwater.  相似文献   
25.
The first attenuation relationships of peak ground acceleration (PGA) and peak ground velocity (PGV) for northern Vietnam are obtained in this study. Ground motion data are collected by a portable broadband seismic network in northern Vietnam as a part of cooperation between the Institute of Geophysics, Vietnamese Academy of Science and Technology, Vietnam and Institute of Earth Sciences, Academia Sinica, Taiwan. The database comprises a total of 330 amplitude records by 14 broadband stations from 53 shallow earthquakes, which were occurred in and around northern Vietnam in the period between 01/2006 and 12/2009. These earthquakes are of local magnitudes between 1.6 and 4.6, focal depths less than 30 km, and epicentral distances less than 500 km. The new attenuation relationships for PGA and PGV are:
log10(PGA)=-0.987+0.7521ML-log10(R)-0.00475R,  相似文献   
26.
Three comprehensive acid deposition models were used to simulate the sulfur concentrations over northeast Asia over the period covering entire year of 2002, and discussed the aggregated uncertainties and discrepancies of the three models. The participating models are from the countries participating in the project of Longrange Transboundary Air Pollutants in Northeast Asia (LTP): China, Japan and Korea. The Eulerian Model-3/CMAQ (by China), Regional Air Quality Model (RAQM, by Japan), and Comprehensive Acid Deposition Model (CADM, by Korea) were employed by each country with common emissions data established by the administrative agencies of China, Japan and Korea. The episodic simulation results between 1 to 15, March 2002 are also presented, during which aircraft measurements were carried out over the Yellow sea. The episodic results show both a wide short-term variability in simulations against measurements, and maximum concentration differences of 3~5 times among the three models, requiring that further attention before confidence among the three models can be claimed for short-term simulations. However, the year-long cumulative simulations showed almost the same general features, with lower aggregated uncertainties between the three models, produced by the long term integration over northeast Asia.  相似文献   
27.
To distinguish true red tide water (particularly Cochlodinium polykrikoides blooms) from non-red tide water (false satellite high chlorophyll water) in the South Sea of Korea, we developed a systematic classification method using spectral information from MODIS level products and applied it to five different harmful algal bloom events. Red tide and nonred tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 678 nm. The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio in areas with lower and higher contributions of CDOM to chlorophyll, respectively. After applying the red tide classification (using the four criteria), the spectral response of the red tide water, which is influenced by pigment concentration, showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water, due to decreasing phytoplankton absorption and increasing detritus/CDOM absorption at blue bands. The results were well matched with the discoloration of water (blue to dark red/brown) and delineated the areal coverage of C. polykrikoides blooms, revealing the nature of spatial and temporal variations in red tides. This simple spectral classification method led to increase user accuracy for C. polykrikoides and non-red tide blooms (>46% and >97%) and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, chlorophyll anomaly, fluorescence analysis, or proposed red tide detection algorithms.  相似文献   
28.
In this study, the effects of the temperature difference between hydraulic fracturing fluid and rock formation on the time‐dependent evolution of fracture width were investigated using a newly derived one‐dimensional anisotropic porothermoelastic analytical solution. The solution is shown to correctly reproduce existing solutions for special cases and corrections for an earlier publication are provided. An analysis of time‐dependent fracture width evolution using Woodford Shale data was also presented. It was found that when the fracturing fluid has the same temperature as the shale formation, the fracture gradually closes back after the initial opening due to the invasion of the fracturing fluid. Practically, in this scenario, proppants should be pumped into the fracture as soon as possible to obtain maximum fracture conductivity. On the other hand, with a fracturing fluid 60 °C colder than the formation, the thermal contraction of the rock dominates the fracture aperture evolution, resulting in a fracture aperture approximately 70% larger than that produced by the hotter fracturing fluid. Consequently, in this case, it is beneficial to delay proppant placement to take advantage of the widening fractures. Finally, it was found that the fracture aperture is directly controlled by the spacing of natural fractures. Therefore, the presence of natural fractures in the shale formation and their spacing influence not only the type of hydraulic fractures created but also what kind and size of proppants should be used to keep them open. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
29.
30.
This study developed an impervious surface fraction algorithm (ISFA) for automatic mapping of urban areas from Landsat data. We processed the data for 2001 and 2014 to trace the urbanization of Tegucigalpa, the capital city of Honduras, using a four-step procedure: (1) data pre-processing to perform image reflectance normalization, (2) quantification of impervious surface area (ISA) using ISFA, (3) accuracy assessment of mapping results and (4) change analysis of urban growth. The mapping results compared with the ground reference data confirmed the validity of ISFA for automatic delineation of ISA in the study region. The overall accuracy and Kappa coefficient achieved for 2001 were 92.8% and 0.86, while the values for 2014 were 91.8% and 0.84, respectively. The results of change detection between the classification maps indicated that ISA increased approximately 1956.7 ha from 2001 to 2014, mainly attributing to the increase of the city’s population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号