首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   9篇
  国内免费   7篇
大气科学   15篇
地球物理   37篇
地质学   33篇
海洋学   34篇
天文学   13篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   2篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
21.
Management of wetland connectivity is important for biodiversity conservation. In the modern agricultural landscape, the natural connections between floodplain wetlands have been greatly altered. Agricultural ditches and channelized streams are widely distributed in floodplains, which may contribute to the maintenance of wetland connectivity and biodiversity. To determine how these watercourse networks affect wetland biodiversity, we examined the relationship between the species richness of aquatic animals and wetland connectivity, with a special focus on species mobility. From July to August 2011, fish and aquatic insects were collected from 24 wetlands in northern Japan. To determine the degree of wetland connectivity, we assessed the relative importance of individual wetlands in maintaining the entire wetland network using two connectivity indices: hydrologic connectivity via watercourses and spatial connectivity defined as Euclidian distances between wetlands using graph theory. We found that only high mobility groups of both taxa could enhance species richness in either a hydrologic (fish) or spatial (insect) wetland network. The species richness of insects with high-flying ability was found to increase as spatial connectivity increased. Furthermore, the species richness of fish with high-swimming ability was positively influenced by hydrologic connectivity, most likely because highly mobile species were able to reach suitable habitats and migrate from source populations in a wetland network owing to their good mobility. Our findings indicate that hydrologic network is important for maintaining biodiversity as well as spatial connectivity. It is important to focus conservation efforts on key wetlands with high hydrologic and spatial connectivity in future wetland management.  相似文献   
22.
This study reports measurements of the Raman spectra of Lake Baikal gas hydrates and estimations of the hydration number of methane-rich samples. The hydration number of gas hydrates retrieved from the southern Baikal Basin (crystallographic structure I) was approx. 6.1. Consistent with previous results, the Raman spectra of gas hydrates retrieved from the Kukuy K-2 mud volcano in the central Baikal Basin indicated the existence of crystallographic structures I and II. Measurements of the dissociation heat of Lake Baikal gas hydrates by calorimetry (from the decomposition of gas hydrates to gas and water), employing the hydration number, revealed values of 53.7–55.5?kJ?mol–1 for the southern basin samples (structure I), and of 54.3–55.5?kJ?mol–1 for the structure I hydrates and 62.8–64.2?kJ?mol–1 for the structure II hydrates from the Kukuy K-2 mud volcano.  相似文献   
23.
24.
We estimated time scales of magma-mixing processes just prior to the 2011 sub-Plinian eruptions of Shinmoedake volcano to investigate the mechanisms of the triggering processes of these eruptions. The sequence of these eruptions serves as an ideal example to investigate eruption mechanisms because the available geophysical and petrological observations can be combined for interpretation of magmatic processes. The eruptive products were mainly phenocryst-rich (28 vol%) andesitic pumice (SiO2 57 wt%) with a small amount of more silicic pumice (SiO2 62–63 wt%) and banded pumice. These pumices were formed by mixing of low-temperature mushy silicic magma (dacite) and high-temperature mafic magma (basalt or basaltic andesite). We calculated the time scales on the basis of zoning analysis of magnetite phenocrysts and diffusion calculations, and we compared the derived time scales with those of volcanic inflation/deflation observations. The magnetite data revealed that a significant mixing process (mixing I) occurred 0.4 to 3 days before the eruptions (pre-eruptive mixing) and likely triggered the eruptions. This mixing process was not accompanied by significant crustal deformation, indicating that the process was not accompanied by a significant change in volume of the magma chamber. We propose magmatic overturn or melt accumulation within the magma chamber as a possible process. A subordinate mixing process (mixing II) also occurred only several hours before the eruptions, likely during magma ascent (syn-eruptive mixing). However, we interpret mafic injection to have begun more than several tens of days prior to mixing I, likely occurring with the beginning of the inflation (December 2009). The injection did not instantaneously cause an eruption but could have resulted in stable stratified magma layers to form a hybrid andesitic magma (mobile layer). This hybrid andesite then formed the main eruptive component of the 2011 eruptions of Shinmoedake.  相似文献   
25.
Precise estimation of unsaturated hydraulic properties of porous media is indispensable in various study areas, such as analyzing the moisture flow, the drying process occurring from the surface, and the pollutant migration beneath the ground surface. Although many empirical/theoretical models describing the unsaturated hydraulic properties have been proposed by several previous researchers, the best model for the different types of soil/rock may not be identical. Thus, the model selection process and the estimation technique of the parameters included in the models should be developed. In the present study, the inverse technique based on the transient evaporation change was investigated to select the model and estimate the model parameters. The experimental work was based on a relatively low permeable soft rock and a relatively high permeable sandy soil (Toyoura standard sand). Experimental equipment was developed to precisely measure the evaporation rate for the high permeable sandy soil. The Genetic Algorithm (GA) was adopted in the inverse technique as an optimization tool. In order to simplify the problem, only the drying process from the saturated condition was considered. It was established that the information concerning the transient evaporation change could be used for the model selection and parameter estimation. Further, the saturation distribution could be used for the selection of the models. The present study provides important information for the development of the model selection process.  相似文献   
26.
The Akan‐Shiretoko volcanic chain, situated in the Southwestern Kurile arc, consists mainly of nine subaerial andesitic stratovolcanoes and three calderas. The chain extends in a SW–NE direction for 200 km, situated oblique to the Kurile trench at an angle of 25 degrees. Thirty‐seven new K–Ar ages, plus previous data, suggest that volcanic activity along the Akan‐Shiretoko volcanic chain began at ca 4 Ma at Akan, at the southwestern end of the chain, and systematically progressed northeastward, resulting in the southwest‐northeast‐trending volcanic chain. This spatial and temporal distribution of volcanoes can be explained by anticline development advancing northeastward from the Akan area, accompanied by magma rising through northeast‐trending fractures that developed along the anticlinal axis. The northeastward development of the anticline caused uplifting of the Akan‐Shiretoko area and changed the area from submarine to subaerial conditions. Anticline formation was likely due to deformation of the southwestern Kurile arc, with southwestward migration of the Kurile forearc sliver caused by oblique subduction of the Pacific plate. The echelon topographic arrangement of the Shiretoko, Kunashiri, Etorofu and Urup was formed at ca 1 Ma.  相似文献   
27.
In this study we analyzed the chemical composition of hydrothermally altered dacite and basalt from the Kuroko mining area, northeastern Honshu, Japan, by REE (rare earth element). Features of rare earth element analyses include: (1) altered footwall dacite exhibits a negative Eu anomaly compared with fresh dacite, suggesting preferential removal of Eu2+ from the altered dacite via hydrothermal solutions, (2) altered hangingwall dacite and basalt and dacite and basalt adjacent to ore deposits exhibit positive Eu anomalies compared with fresh dacite and basalt, suggesting addition of Eu2+ from hydrothermal solutions, (3) LREE ratio (∑LREE/∑REE) from altered dacite of chlorite–sericite zone and K-feldspar zone show a negative relationship with δ18O, and La/Sm ratios show a positive correlation with the K2O index. These trends indicate the addition of light rare earth elements such as La to the altered dacite from hydrothermal solution and/or leaching of heavy rare earth elements such as Sm and Yb, (4) Principal component analysis (PCA) indicates that light rare earth elements enrichment is related to the formation of sericite zone near the Kuroko deposits but not to the formations of chlorite and K-feldspar zones, and (5) The correlations among REE features (LREE ratio, MREE ratio, HREE ratio, Eu/Eu?), δ18O and K2O index are not found for montmorillonite zone, mixed layer clay mineral zone and mordenite zone. Therefore, it is inferred that sericite, chlorite and K-feldspar alterations are related to the Kuroko and vein-type mineralization, but montmorillonite and mordenite alterations are not related to the mineralizations, and probably they formed at the post-mineralization stage.  相似文献   
28.
To investigate effects of a continental slope along the western boundary on the abyssal circulation, numerical experiments using multi-level models were carried out. An ocean which extends over the northern and southern hemispheres is forced by cooling inside the ocean at the southwest corner of the basin and uniform heating through the sea surface. When the reference density for the cooling is vertically uniform, effects of the slope emerge clearly for the slope with considerably broad width. The deep western boundary current flowing over the slope feeds no bottom flows in the southern hemisphere, and carries the warmed deep water into the northern hemisphere. This leads to the increased meridional density gradient, which results in the modification of deep flow patterns. When the reference density is vertically distributed, the upper and lower northward flowing western boundary currents form in the deep layer. As the density stratification relaxes the topographic control, the westward intensification of the upper boundary current is achieved over the slope. The intensified flow is accompanied by the countercurrent and they form the horizontal recirculation over the slope. However, the effects are confined around the slope region and the interior flow patterns do not change. The lower boundary current is not significantly affected by the slope and has the large width with no countercurrent. It is found that the actual continental slope does not have significant effects on the gross feature of the thermohaline circulation.  相似文献   
29.
Methane in the deep water of Izena Cauldron (maximum depth: ca. 1650 m) at the east side of mid-Okinawa Trough was studied by casting a CTD system with 12 Niskin bottles for water sampling at 11 stations inside and outside the cauldron. The water contained much methane up to 706 nmoles/l. The depths of maximum concentration varied widely from station to station, indicating the existence of a considerable number of vents emitting methane and heat. The waters containing less methane formed a straight line in theT-S diagram, while those containing more methane were more largely deviated from the line. The temperature anomaly was virtually proportional to the methane concentration, suggesting that the oxidation rate of methane inside the cauldron is negligibly small and methane can be used as a tracer of the cauldron water. The relation and the estimated vertical diffusivity gave the following fluxes. The emissions of methane and heat out of the bottom below 1450 m turn out to be 1400 moles/day and 7×1010 cal/day, respectively. The total emission rates inside the cauldron are presumed to be about twice the above values. The turnover time of methane has been estimated to be 240 days, which is also that of heat generated from the bottom and probably that of the bottom water.  相似文献   
30.
The steady state wind-driven circulation in an immiscible three-layer ocean bounded only by a meridional east coast and a flat bottom is studied. Particular attention is paid to the occurrence of internal modes of motions in the Sverdrup transports (Sverdrup, 1947). The thicknesses of the upper two layers are of the same order and are allowed to vary up to the same order as the layer thicknesses themselves. Frictional transfer of momentum across the interfaces and the frictional boundary layer at the east coast are neglected. An eastward flow is obtained in the uppermost layer at lower middle latitudes. Though the particular feature in the wind-stress distribution as revealed byYoshida andKidokoro (1967a, 1967b) is not taken into account, the results show good agreement with the observed flow pattern of the Subtropical Countercurrent. Beneath the Subtropical Countercurrent a westward flow is predicted. These flows exhibit an internal mode of motions associated with a subsurface thermal front.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号