首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   17篇
  国内免费   6篇
测绘学   4篇
大气科学   16篇
地球物理   48篇
地质学   53篇
海洋学   45篇
天文学   42篇
综合类   4篇
自然地理   9篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   14篇
  2020年   5篇
  2019年   10篇
  2018年   5篇
  2017年   11篇
  2016年   5篇
  2015年   5篇
  2014年   16篇
  2013年   7篇
  2012年   6篇
  2011年   10篇
  2010年   8篇
  2009年   13篇
  2008年   12篇
  2007年   10篇
  2006年   11篇
  2005年   10篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1978年   2篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
11.
Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2‐return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2‐return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.  相似文献   
12.
All mesosiderites previously reported were subjected to thermal metamorphism and/or partial melting on the parent body. Therefore, their primordial features have been mostly lost. Here, we report detailed petrological and mineralogical features on a mesosiderite, Northwest Africa (NWA) 1878. This meteorite comprises silicate lithology and aggregates of small spheroidal Fe‐Ni metal grains. Silicate lithology typically shows igneous texture without recrystallization features, and mainly consists of low‐Ca pyroxene and plagioclase. Pyroxenes often show normal zoning. Exsolution lamella of augite is rarely noticed and very thin in width, compared with other mesosiderites. A few magnesian olivine grains are encountered without typical corona texture around them. They are not equilibrated with pyroxene on a large scale. Plagioclase shows a wide compositional range. These results show that NWA 1878 hardly experienced thermal metamorphism, distinguished from mesosiderites of subgroups 1–4. Therefore, we propose that this is classified as subgroup 0 mesosiderite. Nevertheless, NWA 1878 was locally subjected to secondary reactions, such as weak reduction of pyroxene and Fe‐Mg diffusion between olivine and pyroxene, on the parent body.  相似文献   
13.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   
14.
15.
Northwest Africa (NWA) 6112, Miller Range (MIL) 090206 (plus its pairs: MIL 090340 and MIL 090405), and Divnoe are olivine‐rich ungrouped achondrites. We investigated and compared their petrography, mineralogy, and olivine fabrics. We additionally measured the oxygen isotopic compositions of NWA 6112. They show similar petrography, mineralogy, and oxygen isotopic compositions and we concluded that these five meteorites are brachinite clan meteorites. We found that NWA 6112 and Divnoe had a c axis concentration pattern of olivine fabrics using electron backscattered diffraction (EBSD). NWA 6112 and Divnoe are suggested to have been exposed to magmatic melt flows during their crystallization on their parent body. On the other hand, the three MIL meteorites have b axis concentration patterns of olivine fabrics. This indicates that the three MIL meteorites may be cumulates where compaction of olivine grains was dominant. Alternatively, they formed as residues and were exposed to olivine compaction. The presence of two different olivine fabric patterns implies that the parent body(s) of brachinite clan meteorites experienced diverse igneous processes.  相似文献   
16.
Biomass distribution and trophodynamics in the oceanic ecosystem in the Oyashio region are presented and analyzed, combining the seasonal data for plankton and micronekton collected at Site H since 1996 with data for nekton and other animals at higher trophic levels from various sources. The total biomass of biological components including bacteria, phytoplankton, microzooplankton, mesozooplankton, micronekton, fishes/squids and marine birds/mammals was 23 g C m−2, among which the most dominant component was mesozooplankton (34% of the total), followed by phytoplankton (28%), bacteria (15%) and microzooplankton (protozoans) (14%). The remainder (9%) was largely composed of micronekton and fish/squid. Marine mammals/birds are only a small fraction (0.14%) of the total biomass. Large/medium grazing copepods (Neocalaus spp., Eucalanus bungii and Metridia spp.) accounted for 77% of the mesozooplankton biomass. Based on information about diet composition, predators were assigned broadly into mean trophic level 3–4, and carbon flow through the grazing food chain was established based on the estimated annual production/food consumption balance of each trophic level. From the food chain scheme, ecological efficiencies as high as 24% were calculated for the primary/secondary production and 21% for the secondary/tertiary production. Biomass and production of bacteria were estimated as 1/10 of the respective values for phytoplankton at Site H, but the role of the microbial food chain remains unresolved in the present analysis. As keystone species in the oceanic Oyashio region, Neocalanus spp. are suggested as a vital link between primary production and production of pelagic fishes, mammals and birds.  相似文献   
17.
A pattern of slick streaks winding into a spiral, known as a spiral eddy, was identified in 5 images taken by the ERS-1/2 synthetic aperture radar (SAR) in Mutsu Bay (Japan); dynamic and kinematic models of these spiral eddies have been proposed. Common characteristics of the five spiral eddies are: 1) an eddy diameter of about 15 km; 2) their location in the western part of the bay; and 3) their cyclonic direction of rotation. Moreover, the wind conditions over the bay were common: prior to acquiring the images, a strong easterly wind continued blowing for more than one day. The wind field on the bay is known to be orographically steered and has strong windstress vorticity, which generates cyclonic circulation. The diameter and location of the circulation simulated with a numerical ocean model corresponded well to those of the identified spiral eddies. Based on these facts, we propose a dynamic model for the movement of a slick streak, and a kinematic model for the formation of a spiral eddy. We have assumed calm air, a microlayer and seawater with a cyclonic circulation in the dynamic model. The balance of forces is established in the microlayer among the frictional force from the seawater, the frictional force from the calm air, the gravitational force, and the Coriolis force. As a result, the velocity vector of the microlayer deflects slightly towards the center of the cyclonic circulation. We have assumed a point source of the microlayer in the kinematic model. The shapes of a slick streak simulated with the models agree well with the identified patterns in the SAR images.  相似文献   
18.
Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato-790729. Under CL microscopy, bright blue emission was observed in Na-lingunite in the shock veins. Dull blue-emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na-lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K-lingunite and experimentally shock-recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K-lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock-recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure-induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar-bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.  相似文献   
19.
The unique occurrence of abundant (~1 vol%) near‐pure‐Fe metal in the Camel Donga eucrite is more complicated than previously believed. In addition to that component of groundmass metal, scattered within the meteorite are discrete nodules of much higher kamacite abundance. We have studied the petrology and composition of two of these nodules in the form of samples we call CD2 and CD3. The nodules are ovoids 11 (CD2) to 15 (CD3) mm across, with metal, or inferred preweathering metal, abundances of 12–17 vol% (CD2 is unfortunately quite weathered). The CD3 nodule also includes at its center a 5 mm ovoid clumping (6 vol%) of F‐apatite. Both nodules are fine‐grained, so the high Fe metal and apatite contents are clearly not flukes of inadequate sampling. The metals within the nodules are distinctly Ni‐rich (0.3–0.6 wt%) compared to the pure‐Fe (Ni generally 0.01 wt%) groundmass metals. Bulk analyses of three pieces of the CD2 nodule show that trace siderophile elements Ir, Os, and Co are commensurately enriched; Au is enriched to a lesser degree. The siderophile evidence shows the nodules did not form by in situ reduction of pyroxene FeO. Moreover, the nodules do not show features such as silica‐phase enrichment or pyroxene with reduced FeO (as constrained by FeO/MgO and especially FeO/MnO) predicted by the in situ reduction model. The oxide minerals, even in groundmass samples well away from the nodules, also show little evidence of reduction. Although the nodule boundaries are generally sharp, groundmass‐metal Ni content is anti‐correlated with distance from the CD3 nodule. We infer that the nodules represent materials that originated within impactors into the Camel Donga portion of the eucrite crust, but probably were profoundly altered during later metamorphism/metasomatism. Origin of the pure‐Fe groundmass metal remains enigmatic. In situ reduction probably played an important role, and association in the same meteorite of the Fe‐nodules is probably significant. But the fluid during alteration was probably not (as previously modeled) purely S and O, of simple heat‐driven internal derivation. We conjecture a two‐stage metasomatism, as fluids passed through Camel Donga after impact heating of volatile‐rich chondritic masses (survivors of gentle accretionary impacts) within the nearby crust. First, reduction to form troilite may have been triggered by fluids rich in S2 and CO (derived from the protonodules?), and then in a distinct later stage, fluids were (comparatively) H2O‐rich, and thus reacted with troilite to form pure‐Fe metal along with H2S and SO2. The early eucrite crust was in places a dynamic fluid‐bearing environment that hosted complex chemical processes, including some that engendered significant diversity among metal+sulfide alterations.  相似文献   
20.
Seasonal variations of the surface currents in the Tsushima Strait were investigated by analyzing the monthly mean surface currents measured with HF radar. Several new features of the surface currents have been found. One notable feature is the large, complicated seasonal variation in the current structure in the eastern channel of the strait. For example, in the southeastern and northwestern regions of the channel, southwestward countercurrents are found in summer while southeastward acrossshore currents are found in autumn and winter. The wind-driven flow (Ekman flow) as well as surface geostrophic currents are responsible for these complicated variations of the surface currents. To quantify each variation of the flow and current, the wind-driven flow was calculated from the monthly wind (more precisely, the friction velocity) using the monthly speed factor and deflection angle estimated in our previous study, and the surface geostrophic currents were then estimated by subtracting the wind-driven flow from the measured surface currents. It was found that the acrossshore currents are the wind-driven flow, and that the surface geostrophic currents flow almost in the along-shore direction, indicating the validity of the decomposition of the surface velocity into the wind-driven flow and the geostrophic currents using the speed factor and deflection angle. A real-vector empirical orthogonal function (EOF) analysis of the surface geostrophic currents shows a pair of eddies in the lee of Tsushima and Iki Islands as the first mode, which indicates that the southwestward countercurrents in the eastern channel are formed primarily by the incoming Tsushima Warm Current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号