首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   50篇
  国内免费   3篇
测绘学   13篇
大气科学   17篇
地球物理   209篇
地质学   216篇
海洋学   67篇
天文学   83篇
综合类   6篇
自然地理   34篇
  2023年   2篇
  2022年   8篇
  2021年   12篇
  2020年   15篇
  2019年   19篇
  2018年   21篇
  2017年   37篇
  2016年   41篇
  2015年   37篇
  2014年   32篇
  2013年   29篇
  2012年   32篇
  2011年   36篇
  2010年   29篇
  2009年   43篇
  2008年   41篇
  2007年   21篇
  2006年   18篇
  2005年   11篇
  2004年   27篇
  2003年   15篇
  2002年   21篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   3篇
  1982年   2篇
  1978年   3篇
  1976年   2篇
  1962年   2篇
  1958年   1篇
  1953年   3篇
  1952年   3篇
  1948年   4篇
  1945年   1篇
  1944年   1篇
  1942年   2篇
  1941年   1篇
  1940年   4篇
  1937年   1篇
排序方式: 共有645条查询结果,搜索用时 31 毫秒
41.
The prediction of the variability of the seismic ground motion in a given built-up area is considered an effective tool to plan appropriate urban development, to undertake actions on seismic risk mitigation and to understand the damage pattern caused by a strong-motion event. The procedures for studying the seismic response and the seismic microzonation of an urban area are well established; nevertheless, some controversial points still exists and are discussed here. In this paper, the selection of a reference input motion, the construction of a subsoil model and the seismic response analysis procedures are discussed in detail, based on the authors’ experience in two Italian case histories: the seismic microzonation of the city of Benevento, which was a predictive study, and the simulation of seismic response and damage distribution in the village of San Giuliano di Puglia, which was a retrospective analysis.  相似文献   
42.
43.
We simulate the collapse of a primordial protostellar cloud by means of a 1D hydrodynamics code accounting for chemical evolution, radiative transfer and radiation pressure. We find that the role of radiation pressure is negligible throughout the whole simulations, i.e. Until shortly after the formation of a central hydrostatic core. We also estimate the luminosity and the spectrum of such collapsing clouds. The luminosity is initially due to a number of H2 lines and is of the order of 1033-34 erg s-1. It then grows to values ≳1036 erg s-1 by the time the core forms, and results from both HH lines and continuum radiation. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
44.

The relationships between cities and underlying groundwater are reviewed, with the aim to highlight the importance of urban groundwater resources in terms of city resilience value. Examples of more than 70 cities worldwide are cited along with details of their groundwater-related issues, specific experiences, and settings. The groundwater-related issues are summarized, and a first groundwater-city classification is proposed in order to facilitate a more effective city-to-city comparison with respect to, for example, the best practices and solutions that have been put in practice by similar cities in terms of local groundwater resources management. The interdependences between some groundwater services and the cascading effects on city life in cases of shock (e.g., drought, heavy rain, pollution, energy demand) and chronic stress (e.g., climate change) are analyzed, and the ideal groundwater-resilient-city characteristics are proposed. The paper concludes that groundwater is a crucial resource for planning sustainability in every city and for implementing city resilience strategies from the climate change perspective.

  相似文献   
45.
Bulletin of Earthquake Engineering - Automated Multi-Depth Shuttle Warehouses (AMSWs) are compact storage systems that provide a large surface occupation and therefore maximum storage density....  相似文献   
46.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
47.
48.
The geology of the Sicilian mainland is summarized by N–S geological sections. A continuous late Cenozoic orogenic belt through central and western Sicily resulted from a complex deformative history, recorded by several tectonic events. The deformation mainly involved the sedimentary cover of the old African continental margin, formed in a large basinal area, bordered at its southern margin by a shallow-water carbonate environment attached to Gondwana. The orogenic belt involves a complex architecture of thrust systems, of different size, geometry and palaeogeographical origin. Deformation, which mainly developed in the earlier stages of thrusting in the basinal rock assemblages, mainly gave rise to a stack of three different duplex structures, respectively, composed of Palaeozoic, Mesozoic–Palaeogene and Neogene strata. Large-scale clockwise rotation of the thrusts predated transpressional movements in the hinterland during the latest Miocene to Pliocene. High- angle reverse faults, with lateral components, modified earlier tectonic contacts within the allochthons. Contemporaneous southwards- directed imbrications affected the external southern areas, progressively incorporating foreland and piggyback basirts. The stratigraphic relationships of basin-fills to the tectonic structures reveals that reactivation processes have been active during the last Plio-Pleistocene.  相似文献   
49.
50.
Diffuse CO<Subscript>2</Subscript> degassing at Vesuvio,Italy   总被引:1,自引:0,他引:1  
At Vesuvio, a significant fraction of the rising hydrothermal–volcanic fluids is subjected to a condensation and separation process producing a CO2–rich gas phase, mainly expulsed through soil diffuse degassing from well defined areas called diffuse degassing structures (DDS), and a liquid phase that flows towards the outer part of the volcanic cone. A large amount of thermal energy is associated with the steam condensation process and subsequent cooling of the liquid phase. The total amount of volcanic–hydrothermal CO2 discharged through diffuse degassing has been computed through a sequential Gaussian simulation (sGs) approach based on several hundred accumulation chamber measurements and, at the time of the survey, amounted to 151 t d–1. The steam associated with the CO2 output, computed assuming that the original H2O/CO2 ratio of hydrothermal fluids is preserved in fumarolic effluents, is 553 t d–1, and the energy produced by the steam condensation and cooling of the liquid phase is 1.47×1012 J d–1 (17 MW). The location of the CO2 and temperature anomalies show that most of the gas is discharged from the inner part of the crater and suggests that crater morphology and local stratigraphy exert strong control on CO2 degassing and subsurface steam condensation. The amounts of gas and energy released by Vesuvio are comparable to those released by other volcanic degassing areas of the world and their estimates, through periodic surveys of soil CO2 flux, can constitute a useful tool to monitor volcanic activity.Editorial responsibility: H. Shinohara  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号