首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   11篇
  国内免费   8篇
测绘学   1篇
地球物理   24篇
地质学   93篇
海洋学   3篇
综合类   1篇
自然地理   18篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   8篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   7篇
  2005年   14篇
  2004年   8篇
  2003年   11篇
  2002年   9篇
  2001年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
排序方式: 共有140条查询结果,搜索用时 46 毫秒
91.
内蒙东部晚第四纪火山活动与新构造   总被引:8,自引:4,他引:4  
本文所指的晚第四纪包括晚更新世和全新世。内蒙东部晚第四纪火山活动强烈,北起大兴安岭北部的鄂伦春诺敏河火山群、经阿尔山-柴河、锡林浩特-阿巴嘎火山群,南抵察右后旗乌兰哈达火山群,断续延伸约1000km,分布着约390余座大小不一、形态各异的火山,构成了内蒙东部壮观的北北东向第四纪火山喷发带。火山类型包括玛珥式、夏威夷式、斯通博利式、亚布里尼式和冰岛式,以斯通博利式最为发育。爆破式火山作用包括射汽、射汽-岩浆爆发和岩浆爆发。火山岩类型主要为碱性玄武岩及其火山碎屑物(岩),火山岩具初期裂谷构造属性。火山活动主体受北北东向基底断裂控制,但就具体火山群而言,又多处于北东和北西向基底深断裂交会处。区内新构造与火山活动密切相关,深部岩浆的上侵,可能是控制本区新构造活动的主因。尤其是全新世火山的空间展布,显示了内蒙东部新构造的活动性。  相似文献   
92.
Analysis of stress measurement data from the near-surface to crustal depths in southern Ontario show a misalignment between the direction of tectonic loading and the orientation of the major horizontal principal stress. The compressive stress field instead appears to be oriented sub-parallel to the major terrane boundaries such as the Grenville Front, the Central Metasedimentary Belt boundary zone and the Elzevir Frontenac boundary zone. This suggests that the stress field has been modified by these deep crustal scale deformation zones. In order to test this hypothesis, a geomechanical model was constructed using the three-dimensional discontinuum stress analysis code 3DEC. The model consists of a 45 km thick crust of southern Ontario in which the major crustal scale deformation zones are represented as discrete faults. Lateral velocity boundary conditions were applied to the sides of the model in the direction of tectonic loading in order to generate the horizontal compressive stress field. Modelling results show that for low strength (low friction angle and cohesion), fault slip causes the stress field to rotate toward the strike of the faults, consistent with the observed direction of misalignment with the tectonic loading direction. Observed distortions to the regional stress field may be explained by this relatively simple mechanism of slip on deep first-order structures in response to the neotectonic driving forces.  相似文献   
93.
Quaternary and directly underlying Late Miocene (Pannonian) outcrops were analysed by structural, tectono-morphologic and sedimentologic methods to describe the main fault directions, to separate mass movements from faulting and folding and to separate earthquake-induced sediment deformations from other (e.g. periglacial) effects in the Somogy Hills. This is a gentle hilly area elevated at 200–300 m above sea level, located immediately south of Lake Balaton, Hungary.

Quaternary outcrops showed several consistent directions of faulting, and co-depositional seismic activity. Three different Mohr-sets of faults/joints could be differentiated in Quaternary sediments. The three sets are considered Late Quaternary since all cut young loess sections and have morphological expressions.

On the basis of the microtectonic measurements and morphotectonic investigations, the following sequence of Quaternary events can be proposed:

1. A (W)NW–(E)SE compression and perpendicular extension would create E–W to WNW–ESE oriented right lateral, NNW–SSE to N–S oriented left lateral shear zones, and NW–SE striking normal faults. Some of these can be evidenced in morphology and among the individual fault measurements. Some reactivated faults might suggest that this field is a relatively older one, but fresh topographic elements suggest that this stress field might be operational sub-recently.

2. A second stress field with NNW–SSE extensional and ENE–WSW oriented compressional directions could be separated. This stress field could create NNE–SSW and NW–SE oriented shear fractures and ENE–WSW oriented conjugate normal faults. Flat thrusts giving ENE directed shear may also be active under this field.

3. A third stress field might be proposed with N–S compression and perpendicular extension directions. This would create NE–SW and NW–SE oriented shear fractures, which are observed in the measured fault data. It is remarkable that the NE–SW faults are all steep, subvertical, and give a very well defined fault set. Based on the fresh topographic expression, this stress field is also sub-recent.

The different sub-recent stress fields and related fault patterns might succeed each other or might alternate through time. The first and third deformations have fresh topographic expressions and cannot play synchronously. The observed features suggest a compressionally active neotectonics of the study area.  相似文献   

94.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   
95.
湘西北地区岩溶旋回及新构造遥感信息特征   总被引:2,自引:0,他引:2  
根据2000TM遥感影像信息特征,湘西北地区有NEE向,NNE向和近SN向3类新构造带,各新构造带岩溶发育阶段,分别相当于中年期,青年期和幼年期,岩溶发育各阶段表现出不同的岩溶地貌,流水地貌和岩溶水文地质特征,反映了新构造运动由强烈活动→趋向稳定平静的过程。  相似文献   
96.
Geological and geophysical research in upstate New York, with few exceptions, has not definitively associated seismicity with specific Proterozoic basement or Paleozoic bedrock structures. The central part of the Clarendon–Linden fault system (CLFS) between Batavia and Dale, NY is one of those exceptions where seismicity has been studied and has been spatially associated with structure. The CLFS is either a complex system of long faults with associated shorter branches and parallel segments, or a region of many short faults aligned north–south from the Lake Ontario shore southward to Allegany County, NY. Interpretation of 38 km of Vibroseis and approximately 56 km of conventional seismic-reflection data along 13 lines suggests that the CLFS is a broad zone of small faults with small displacements in the lower Paleozoic bedrock section that is at least 77 km long and 7–17 km wide and spatially coincident with a north-trending geophysical (combined aeromagnetic and gravity) lineament within the basement. The relative offset across the faults of the system is more than 91 m near Attica, NY. The CLFS is the expression of tectonic crustal adjustments within the Paleozoic rock above the boundary of two basement megablocks of differing petrologic provinces and differing earthquake characteristics that forms the eastern side of the Elzevir–Frontenac boundary zone. Deep seismic-reflection profiles display concave-eastward listric faults that probably merge at depth near the mid-crustal boundary layer. An interpretive vertical section provides the setting for refined definitions of the CLFS, its extensions at depth and its relation to seismicity. Most modern seismicity in western New York and the Niagara Peninsula of Ontario occurs in apparent patterns of randomly dispersed activity. The sole exception is a line of seven epicenters of small earthquakes that trend east from Attica, NY into the Rochester basement megablock. Earthquakes may be triggered at the intersections of north- and east-trending brittle faults within the Niagara basement megablock. Current interpretations of the mechanisms for earthquake generation in western New York and the Niagara Peninsula of Ontario require conservative estimates of seismic hazards that assume that an earthquake the size of the 1929 Attica, NY, event (Mb=5.2) or larger could occur anywhere in the Eastern Great Lakes Basin (EGLB). The broad zone of small-displacement faults that marks the CLFS in the lower Paleozoic sedimentary section and the uppermost basement may not provide the structural environment for generation of earthquakes in western New York. If this interpretation is correct, most seismicity is generated within the Niagara basement megablock beneath or west of the CLFS. Consequently, we may have to look to the deeper tectonic regime of basement megablocks to understand the distribution of modern seismicity in the EGLB.  相似文献   
97.
湘鄂赣皖交界区的湖盆演化及其控制因素   总被引:11,自引:1,他引:11  
受燕山期构造格局控制,湘鄂赣皖交界区的白垩-早第三纪湖盆呈近东西向和近南北向展布、第四纪湖盆继承这一格局发育,局部受到新构造运动改造,其中最重要的是北北东向的江汉-洞庭断陷;麻城-团风断裂控制了孝感断陷和梁子湖断陷,并使某些断陷湖演化为复成因湖。北西向断裂和鄂东南的掀斜对第四纪湖盆发育也有重要作用。在此基础上讨论了燕山运动的特征、北北东向断裂新生代活动的机制等问题。  相似文献   
98.
A geomorphic study of the Mississippi River and its alluvial valley between Osceola, Arkansas and Friars Point, Mississippi has identified anomalous surface features that can be linked to known geological structures. For example, relatively recent deformation along Big Creek fault zone, White River fault zone, Bolivar-Mansfield tectonic zone, Blytheville Arch, Crittenden County fault zone, and Reelfoot Rift margins is suggested by river and topographic anomalies. Faults and plutons appear to affect drainage networks, and the morphology of Crowleys Ridge suggests significant fault control. The many anomalies probably reflect a fractured suballuvial surface. Although movement along these fractures will most likely occur in seismically active areas, the probability of movement elsewhere  相似文献   
99.
The Spanish Central Pyrenees have been the scenario of at least two damaging earthquakes in the last 800 years. Analysis of macroseismic data of the most recent one, the Vielha earthquake (19 November 1923), has led to the identification of the North Maladeta Fault (NMF) as the seismic source of the event. This E–W trending fault defines the northern boundary of the Maladeta Batholith and corresponds to a segment of the Alpine Gavarnie thrust fault. Our study shows that the NMF offsets a reference Neogene peneplain. The maximum observed vertical displacement is  730 m, with the northern downthrown sector slightly tilting towards the South. This offset provides evidence of normal faulting and together with the presence of tectonic faceted spurs allowed us to geomorphically identify a fault trace of 17.5 km. This length suggests that a maximum earthquake of Mw = 6.5 ± 0.66 could occur in the area. The geomorphological study was improved with a resistivity model obtained at Prüedo, where a unique detritic Late Miocene sequence crops out adjacent to the NMF. The section is made up of 13 audiomagnetotelluric soundings along a 1.5 km transect perpendicular to the fault trace at Prüedo and reveals the structure in depth, allowing us to interpret the Late Miocene deposits as tectonically trapped basin deposits associated with normal faulting of the NMF. The indirect age of these deposits has been constrained between 11.1 and 8.7 Ma, which represents a minimum age for the elevated Pyrenean peneplain in this part of the Pyrenees. Therefore, we propose the maximum vertical dip-slip rate for the NMF to be between 0.06 and 0.08 mm/a. Normal faulting in this area is attributed to the vertical lithospheric stress associated with the thickened Pyrenean crust.  相似文献   
100.
湟水河流域不对称地貌与青藏高原—祁连山隆升   总被引:6,自引:0,他引:6  
黄生长  李长安 《江西地质》1998,12(4):251-256
湟水河流域发育夷平面和不对称的分水岭、阶地、沟谷等地貌,不对称地貌主要有简单不对称沟谷、不对称分水岭和阶地式不对称沟谷。它们是由于南北两侧隆升幅度不同,在地面流水侵蚀作用下产生。地貌的不对称反映出青藏高原的隆升在大的时间尺度上是均匀的,在小尺度上是不均匀的;高原隆升到一定高度后,受印度板块侧向挤压、高原向四周扩展的应力的共同作用引起了祁连山的隆升;祁连山隆升的同时西北地区的气候开始恶化  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号