首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   62篇
  国内免费   162篇
测绘学   9篇
大气科学   12篇
地球物理   282篇
地质学   104篇
海洋学   453篇
天文学   2篇
综合类   78篇
自然地理   36篇
  2024年   12篇
  2023年   20篇
  2022年   21篇
  2021年   25篇
  2020年   24篇
  2019年   28篇
  2018年   39篇
  2017年   16篇
  2016年   30篇
  2015年   40篇
  2014年   41篇
  2013年   53篇
  2012年   46篇
  2011年   58篇
  2010年   32篇
  2009年   45篇
  2008年   51篇
  2007年   54篇
  2006年   40篇
  2005年   36篇
  2004年   26篇
  2003年   23篇
  2002年   29篇
  2001年   17篇
  2000年   15篇
  1999年   26篇
  1998年   18篇
  1997年   20篇
  1996年   14篇
  1995年   17篇
  1994年   10篇
  1993年   6篇
  1992年   14篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
排序方式: 共有976条查询结果,搜索用时 31 毫秒
41.
Seasonal and inter-annual patterns of macroalgal abundance in a Tagus Estuary oyster reef are described. Macroalgal abundance was estimated as canopy percent cover by three permanent point intercept transects over a 7-year period. Four categories were defined, corresponding to bare substrate and three different macroalgal functional-form groups: (1) ULVA, foliose group, included Ulva spp.; (2) GRACIL, terete corticated macrophyte group, included only Gracilaria gracilis; and (3) FILAM, small (<10 cm) filamentous group, including eight species. A canonical correspondence analysis (CCA) showed that: (1) ULVA were associated with long and hot days, being usually dominant during spring and especially summer; (2) FILAM were associated with mild temperatures and relatively long days, abundant in spring but showed frequent peaks in summer; and (3) GRACIL were also favoured by spring season, although associated to lower temperature and less daylight hours than FILAM. GRACIL and FILAM were present throughout the year. On the contrary, ULVA were absent or with low cover during colder periods. A negative correlation between GRACIL and FILAM seems to indicate competition between the two categories. The applied models explained 23.3% of the temporal variance in category abundance. Rainfall negatively affected macroalgal cover, as indicated by the positive correlation between rainfall and bare substrate. Our conclusions are in agreement with previous studies that consider algae as excellent environmental integrators, even on a small scale, due to a strong link between the macroalgal communities and relevant environmental variables. It is also relevant that this study used open-access databases of environmental variables, which open up new possibilities for mining existing data resources in new ways. Due to large inter-annual variability, long-term studies are essential to understand population dynamics in estuarine phytobenthic communities.  相似文献   
42.
2004年4~5月初在东海赤潮高发区暴发的特大规模原甲藻赤潮前期和暴发初期对该海域进行的现场调查,并对该海域COD的分布特征进行了探讨。结果表明,赤潮暴发前COD为0.295-1.836mg/L,主要受陆源输入影响。根据其在局部海区底层出现的异常升高结合其他参数分析可对特定海区潜在赤潮暴发的可能性进行评估。赤潮暴发时COD为0.36~3.14mg/L,表层和中层与叶绿素存在显著正相关关系,表明其主要受生物影响。富营养化指数表明赤潮暴发前近一半海域已经处于富营养化状态,但COD对富营养化的贡献不如营养盐重要。  相似文献   
43.
有毒赤潮藻及其毒素的危害与检测   总被引:6,自引:0,他引:6  
海洋中可引发赤潮的藻类约有300种,其中有毒赤潮藻为80种左右。现已知道的赤潮藻主要毒素有麻痹性贝毒、腹泻性贝毒、记忆缺失性贝毒、神经性贝毒、西加鱼度和溶血性毒素,前5种毒素的结构已经基本得到证实。有毒赤潮藻的毒素可以在海洋生物体内积累,人类误食含有藻毒素的食品时可能中毒,严重者还可能死亡。海洋有毒赤潮藻及其毒素的检测已经成为当今全球赤潮研究和监测的重要内容之一,可以通过形态学分类方法、分子生物学技术(遗传探针)和免疫学检测技术对有毒赤潮藻进行检测;可以通过生物学、物理化学检测方法和神经受体结合、免疫学检测技术对赤潮藻毒素进行检测。  相似文献   
44.
通过对南海东部 149 站深海柱状剖面的孢粉、藻类研究,根据孢粉成分的变化将该孔沉积层从下至上划分为 4 个孢粉组合带.1 带:Pinus-Quercus(常绿)-Umbellferae-Gramineae-Pteris 孢粉带(407~270cm);2 带:Dacrydium-Quercus-Cyathea-Pinus-Polypodiaceae 孢粉带(270~105 cm);3 带:Pinus-Polypodiaceae-Quercus(常绿)-Pteridium 孢粉带(105~30 cm);4 带:Gleditsia-Cyathea-Pinus-Polypodiaceae 孢粉带(30~0 cm).并相应恢复了南海东部 7.5 万 a 以来 4 个植被、气候、古环境演替阶段:热带北缘半常绿季雨林、热带季雨林、热带北缘半常绿季雨林和热带季雨林.结合氧同位素测年资料,对 149 站柱状地层时代作了划分.  相似文献   
45.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   
46.
Five sedimentary facies are described from SCUBA diving examination and sampling of Mannin Bay, Ireland. A Bank facies is built up by the unattached coralline algae Lithothamnium corallioides and Phymatolithon calcareum. This autochthonous facies occurs in shallow sheltered environments. In exposed areas a rippled Clean Algal Gravel facies is found composed of coralline and molluscan debris. In intermediate energy areas a Muddy Algal Gravel facies is found with small amounts of live corallines. Sheltered creeks have a Mud facies which is partly carbonate and partly terrigenous. The shallow water coralline algal sediments are overlapped by a Fine Sand facies of mixed biogenic composition. Each facies is characterized by particular phenotypic growth forms of the unattached corallines. Rates of organic calcium carbonate production are obtained which are found to be similar to rates from shallow tropical non-reef environments. The carbonate sediments of Mannin Bay are compared with similar sediments from Kilkerrin Bay. Ireland, from Brittany and from Falmouth Harbour. From these comparisons, facies models are proposed for these carbonate sediments. The major factor controlling facies distribution is coastal morphology. The present day shelf is considered to be too exposed to preserve complete sequences of the shallow water sediments.  相似文献   
47.
报道秦皇岛港区底栖海藻的群落结构、季节变化、生物量及优势种类等。通过4次定性采样指出:4月和6月的种类数高于8月和10月,群落组成都以红藻类为优势。平均生物量分布以金山咀最高,灯塔最低,各采样点的优势种是新煤码头为绿藻类的孔石莼、肠浒苔和尾孢藻;灯塔为红藻类的珊瑚藻、鸭毛藻及绿藻类的孔石莼和刺松藻,金山咀为孔石莼、刺松藻、萱藻和蜈蚣藻。  相似文献   
48.
4种海洋单胞藻生化组成的环境因子效应研究   总被引:15,自引:0,他引:15  
在实验室模拟条件下,应用14C示踪法测定4种海洋单胞藻的光合作用速率,研究光、温度和营养盐等环境因子对藻类细胞生化组成的影响.结果表明,三角褐指藻、盐藻、中肋骨条藻和等鞭金藻适宜生长的光强范围为5.8×103~15×103lx.4种单胞藻光合作用速率随光强增加而增大,其中盐藻和等鞭金藻的光响应比较明显.随光强增加,4种单胞藻细胞的碳水化合物含量及其变化量呈增加趋势,而蛋白质含量及其变化量则减少,脂类含量变化很小.三角褐指藻、盐藻、中肋骨条藻和等鞭金藻最适生长温度分别为:14、26、21、26℃左右.在上述4个实验温度时,4种单胞藻光合作用速率最高,细胞内的碳水化合物、蛋白质、脂类含量及其变化量也达到最大值.三角褐指藻、盐藻、中肋骨条藻和等鞭金藻光合作用过程的表观活化能(E)分别为:23.2、38.5、22.4和61.7KJ/mol,温度系数(Q10)分别为:1.74、1.74.1.38和1.69.三角褐指藻和中肋骨条藻在氮磷比(N/P)为16时,盐藻和等鞭金藻在氮磷比为28时,光合作用速率最大.在N/P为16时,4种单胞藻细胞内的碳水化合物、蛋白质、脂类含量和变化量均达到最大值.  相似文献   
49.
山东沿海海藻抗肿瘤活性的筛选   总被引:28,自引:6,他引:28  
于1997年4月和2000年5月对山东沿海海藻进行较系统的采集,对其中39种海藻的96个样品采用高通量方法进行选择性细胞毒筛选,结果表明,小粘膜藻(Leathesia dif-formes)、多管藻(Polysiphonia urcedata)、萱cytosiphon lomentarius)、海萝(Gloiopeliis fur-cata)、叉开网翼藻(Dictyopteris diuaricata)、点叶菜(Punctaria latifolia)等对KB细胞或HT-29细胞具有选择性抑制活性。局醇、氯仿的提取效率较高,多管藻的乙醇、氯仿提取物,萱藻的乙醇提取物和叉开网翼藻的正己烷提取物都有强的选择性细胞毒活性。  相似文献   
50.
本研究采用现场定量观测为主的研究方法,在2017年5月期间对苏北浅滩竹根沙收紫菜养殖筏架作业过程进行跟踪调查;对养殖筏架绠绳附生绿藻自然脱落和收筏架作业过程人为刮落附生绿藻,以及收筏架作业前后入海的漂浮绿藻生物量进行定量观测。结果表明:筏架绳附生绿藻自然脱落率低,为3.58%±0.78%;收筏架作业过程中绠绳上刮落绿藻生物量为(12±3)kg湿重/根,由此估算2017年整个苏北浅滩刮落的生物量估算可达到万吨湿重;收筏架作业后海域漂浮绿藻生物量是作业前的7.6倍。研究结果进一步明确了收筏架作业过程中人为刮落绿藻是目前筏架附生绿藻最主要的入海方式。刮落绿藻是海水中漂浮绿藻的主要来源,其生物量对南黄海绿潮的规模大小有重要的影响。研究结果为绿潮防控措施的制定和实施提供科学依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号