首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
  国内免费   11篇
大气科学   12篇
海洋学   11篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2014年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
We use the WRF (V3.4) model as the experimental model and select three horizontal resolutions of 15, 9, and 3km to research the influence of the model’s horizontal resolution on the intensity and structure of the super-strong typhoon Rammasun (1409) in 2014. The results indicate that the horizontal resolution has a very large impact on the intensity and structure of Rammasun. The Rammasun intensity increases as the horizontal resolution increases. When the horizontal resolution increases from 9km to 3km, the enhancement of intensity is more obvious, but the strongest intensity simulated by 3km horizontal resolution is still weaker than the observed strongest intensity. Along with the increase of horizontal resolution, the horizontal scale of the Rammasun vortex decreases, and the vortex gradually contracts toward its center. The vortex structure changes from loose to compact and deep. The maximum wind radius, thickness of the eye wall, and outward inclination of the eye wall with height decrease, and the wind in the inner core region, updraft motion along the eye wall, and strength of the warm core become stronger. Additionally, the pressure gradient and temperature gradient of the eye wall region increase, and the vortex intensity becomes stronger. When the horizontal resolution increases from 9km to 3km, the change in the Rammasun structure is much larger than the change when the horizontal resolution increases from 15km to 9km. When the model does not employ the method of convection parameterization, the Rammasun intensity simulated with 3km horizontal resolution is slightly weaker than the intensity simulated with 3km horizontal resolution when the Kain–Fritsch (KF) convection parameterization scheme is adopted, while the intensity simulated with 9km horizontal resolution is much weaker than the intensity simulated with 9km horizontal resolution when the KF scheme is adopted. The influence of the horizontal resolution on the intensity and structure of Rammasun is larger than the influence when the KF scheme is adopted.  相似文献   
12.
邵超  戚洪帅  蔡锋  陈沈良 《海洋学报》2016,38(2):121-130
珊瑚礁海岸在我国热带地区广泛发育,海滩-珊瑚礁海岸的动力地貌过程是认识该类海岸的关键。本文基于对海南铜鼓岭-高隆湾岸段的台风"威马逊"前后跟踪观测,讨论了海滩风暴响应特征及其与珊瑚礁发育之间的联系。结果表明该岸段海滩在"威马逊"风暴作用下响应最为剧烈的区带位于平均海平面(MSL)以上,表现为后滨冲越,以及岸线蚀退、滩肩变窄、滩面侵蚀等响应特征。海滩风暴响应特征与近岸珊瑚礁发育密切相关,在无珊瑚或珊瑚受损的岸段海滩响应剧烈,剖面平均变化率(MPC)为其他岸段的3~6倍,珊瑚礁通过消耗波能对相邻海滩提供良好保护。海滩-珊瑚礁系统对风暴的响应特征受控于珊瑚礁对海岸波浪的消耗能力和海滩固有的缓冲能力。基于本文研究结果,归纳出风暴极端动力条件下海滩-珊瑚礁海岸的4种风暴响应模式。  相似文献   
13.
The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002)   总被引:3,自引:0,他引:3  
Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysisof TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data,some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at several moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5 in which the validations have been made with the data of TRMM and NCEP/AVN analysis.  相似文献   
14.
A 72-h high-resolution simulation of Supertyphoon Rammasun (2014) is performed using the Advanced Research Weather Research and Forecasting model. The model covers an initial 18-h spin-up, the 36-h rapid intensification (RI) period in the northern South China Sea, and the 18-h period of weakening after landfall. The results show that the model reproduces the track, intensity, structure of the storm, and environmental circulations reasonably well. Analysis of the surface energetics under the storm indicates that the storm's intensification is closely related to the net energy gain rate (ε g), defined as the difference between the energy production (P D) due to surface entropy flux and the energy dissipation (D S) due to surface friction near the radius of maximum wind (RMW). Before and during the RI stage, the ε g is high, indicating sufficient energy supply for the storm to intensify. However, the ε g decreases rapidly as the storm quickly intensifies, because the D S increases more rapidly than the P D near the RMW. By the time the storm reaches its peak intensity, the D S is about 20% larger than the P D near the RMW, leading to a local energetics deficit under the eyewall. During the mature stage, the P D and D S can reach a balance within a radius of 86 km from the storm center (about 2.3 times the RMW). This implies that the local P D under the eyewall is not large enough to balance the D S, and the radially inward energy transport from outside the eyewall must play an important role in maintaining the storm's intensity, as well as its intensification.  相似文献   
15.
This paper investigates the effect of horizontal resolution on the precipitation of the super typhoon Rammasun (1409). The experiment uses WRF (V3.4) model with resolutions of 15 km, 9 km and 3 km. The results suggest that the simulated Rammasun rain band shapes and distributions at different horizontal resolutions are nearly the same. When the resolution is increased from 15 km to 9 km and then to 3 km, heavy precipitation is observed to spread in all directions from a concentrated distribution, especially when the resolution is increased from 9 km to 3 km. The 6h and 1h heavy precipitations also show a more significant comma-shape distribution. Moreover, the water vapor distribution shows the same characteristics as the heavy precipitation with a notably enhanced ascending movement and a decreased height of the strongest ascending movement. Of the three resolutions, the precipitation distribution simulated at 3 km resolution is the closest to the observed distribution; however, there is still a noticeable difference between the simulated precipitation and the actual observation. With the absence of the convection parameterization in the model, the precipitation distributions simulated at 9 km and 3 km resolutions demonstrate the same features as when the KF convection parameterization is applied. However, the simulated precipitations at these two resolutions are smaller than those obtained with the KF scheme. Meanwhile the difference between the simulated precipitations at these two resolutions is also smaller than that in the latter case. In general, when KF scheme is applied to the model, the simulation effect of Rammasun precipitation is better than that obtained without the convection parameterization scheme.  相似文献   
16.
In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter (EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of EnKF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying EnKF with optimized samples improved the estimated track, intensity, precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of EnKF.  相似文献   
17.
威马逊台风对上海地区风暴增水的影响   总被引:2,自引:0,他引:2  
本文首先介绍威马逊台风(0205号)的生成、发展和消亡过程以及该台风的特点,然后介绍了我中心发布上海市沿海风暴潮预报的有关情况,并对威马逊台风引发的特大增水成因作了分析。认为持续的东北大风和低压效应是台风增水的主要动力因素。这次台风过程末对上海市沿海造成超过警戒水位的原因是当台风位置处于有利于产生极大增水时,上海市沿海恰逢天文小潮汛(出现在低潮时):而当天文高潮出现时,台风位置已稍偏北,不利于增水。最后作了两个推论,认为如果上海市再遇到类似的台风过程,而又恰逢天文大潮汛,或台风北上的路径再靠近大陆1个经距的话,上海市将出现超过600cm的特大潮位。  相似文献   
18.
利用广东省徐闻县西连镇90 m测风塔在1409号超强台风威马逊登陆期间获取的具备完整的台风代表性的观测数据以及处于台风外围的广东省茂名市博贺镇100 m测风塔的观测数据,对台风威马逊的近地层强风特性进行了分析,西连测风塔结果表明:风速时程曲线呈明显的"M"型分布特征,台风中心经过测风塔前后,风向沿逆时针方向大幅偏转约170°。风速随高度增加而增大,风速廓线较好地符合对数和幂指数律;台风过境前后,各强风区的风速廓线幂指数和粗糙长度呈先减小后增大的特点;粗糙陆地下垫面的风速廓线幂指数和粗糙长度较大。湍流强度和阵风系数在前外围强风区或后外围强风区较大,在前眼壁强风区或后眼壁强风区较小,湍流强度和阵风系数随高度增加而减小,基本符合指数为负值的幂指数律;粗糙下垫面对湍流强度和阵风系数有增大的作用。外围强风区和眼壁强风区的10 min风向变率变化较为平稳,而在眼区变动较为剧烈,在眼区,当风速达到最低值或次低值时,10 min风向变率幅值达到最大值。博贺测风塔结果表明其总体上与西连测风塔台风前外围和前眼壁强风区的情形相似。  相似文献   
19.
铁山港海湾是一个遭受风暴潮灾害影响较为严重的半封闭型海湾,基于有限元海洋数学模型ADCIRC (Advanced Circulation Model)研究了1409号"威马逊"台风期间铁山港海湾的风暴潮特征及非线性作用。结果表明:当考虑天文潮与风暴潮之间的相互作用时,风暴潮水位的计算结果更加准确,只考虑纯台风影响时,计算结果会低估风暴潮增水值,高估减水值,对预报结果造成较大的误差。海湾内部的增水要远大于湾外,但是减水值则相差不大。通过对天文潮和风暴潮非线性作用的影响因子进行分析,风应力的浅水效应可以忽略,但底摩擦项和对流项影响较大。在海湾内部对流项占主导地位,与天文潮的耦合作用也较强;而在湾外,底摩擦项占优势,耦合作用在海湾内外都较强。天文潮与风暴潮相互作用产生的非线性水位在湾顶处最大可达0.94 m,出现在风暴潮最大减水时刻,风暴潮增水发生后有所减弱,非线性水位表现出从湾外向湾内递增的规律。  相似文献   
20.
以2014年7月18日09号超强台风"威马逊"影响期间,发生在湘赣地区的一次台前飑线过程为例,讨论了在垂直风切变明显弱于中纬度飑线情况下台前飑线的生成与发展机制。研究表明:1)在飑线初生阶段,弱垂直风切变与较弱冷池相平衡使得飑线垂直发展,其前部上干冷下暖湿的不稳定环境条件是其发展加强的热力因素;台风倒槽右侧风向水平切变、飑线前侧的阵风锋是其发展的动力条件。2)在飑线成熟阶段,飑线后侧的地面冷池范围变大、强度变强,导致飑线前方的水汽及能量补给减弱;同时飑线后部中层干冷空气入侵加强,飑线上升气流向冷池方向倾斜,垂直抬升条件减弱,不利于台前飑线的发展维持。成熟阶段的这两个特点表明台前飑线由盛转衰。3)在飑线消散阶段,由于飑线远离台风,台风的影响减弱,导致台前飑线水汽和动力条件不足,从而消亡。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号