首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13044篇
  免费   3649篇
  国内免费   3829篇
测绘学   1216篇
大气科学   532篇
地球物理   2984篇
地质学   12155篇
海洋学   1651篇
天文学   316篇
综合类   955篇
自然地理   713篇
  2024年   129篇
  2023年   516篇
  2022年   726篇
  2021年   743篇
  2020年   583篇
  2019年   723篇
  2018年   571篇
  2017年   600篇
  2016年   609篇
  2015年   709篇
  2014年   972篇
  2013年   783篇
  2012年   940篇
  2011年   899篇
  2010年   792篇
  2009年   784篇
  2008年   785篇
  2007年   751篇
  2006年   639篇
  2005年   595篇
  2004年   539篇
  2003年   548篇
  2002年   484篇
  2001年   483篇
  2000年   476篇
  1999年   444篇
  1998年   418篇
  1997年   404篇
  1996年   383篇
  1995年   354篇
  1994年   329篇
  1993年   295篇
  1992年   311篇
  1991年   309篇
  1990年   277篇
  1989年   218篇
  1988年   62篇
  1987年   48篇
  1986年   47篇
  1985年   42篇
  1984年   14篇
  1983年   23篇
  1982年   28篇
  1981年   18篇
  1980年   27篇
  1979年   19篇
  1977年   5篇
  1964年   5篇
  1958年   7篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
李飞 《地质与勘探》2020,56(3):566-579
本文依据江苏如东滩涂区综合地球物理调查工作,对小洋口地区断裂构造空间展布进行了解译,分析了解译断裂与栟茶河断裂的关系。解译结果主要参考实测无人机航磁资料,辅以浅层地震和电磁法资料。综合两个子测区的断裂构造解译结果,同时参考华东地区航磁和重力资料,对栟茶河断裂的空间展布位置进行了推断,认为其是近EW向大型断裂,延伸距离长,同时控制测区其他断裂的展布。实测数据未发现金坛—如皋断裂在测区范围内存在的地球物理证据,分析认为其未发育至栟茶河断裂以北。  相似文献   
12.
混合岩型铀矿是康滇地轴上最有希望取得找矿突破的铀矿类型,海塔地区的铀矿化即是该类型铀矿的典型代表。本文针对区内的长英质脉矿石、富晶质铀矿石英脉矿石和含矿热液石英脉中的石英流体包裹体进行了研究。结果表明,海塔地区混合岩型铀矿的成矿作用可分为2个阶段:早期混合岩化热液成矿阶段为高温、中低盐度流体,流体包裹体均一温度集中在380~540℃,盐度变化范围为16.15%~23.18%NaCl eqv,是区内铀成矿的主要阶段;晚期热液叠加改造成矿阶段为中低温、低盐度流体,流体包裹体均一温度集中在140~220℃,盐度变化范围为5.56%~23.18%NaCleqv,是区内富铀矿的形成阶段。流体包裹体的气相成分测试表明,长英质脉矿石石英包裹体中以CH4、CO2为主,其次为H2O和N2;而富晶质铀矿石英脉及含矿热液石英脉石英包裹体中以H2为主,部分含有CO2、CH4、H2O。氢、氧同位素研究表明,早期混合岩化成矿阶段的成矿流体可能为岩浆水与变质水的混合,而晚期热液叠加改造成矿阶段成矿流体中可能有大气降水的加入。  相似文献   
13.
五龙金矿床位于五龙矿集区中部,是矿集区内规模大的石英脉型金矿。为查明矿集区深部构造及指导深部找矿预测,需结合深部地球物理资料综合分析研究。本文基于五龙矿集区航空探测任务,并结合其成矿地质特征,研究了五龙金矿在平面、剖面、空间等维度的航磁、航空TEM、航空大地电磁特征及其找矿意义。研究表明:平面上矿体位于鸡心沟断裂东侧负磁背景场中NE与近SN、NW向弱磁异常带交汇处,中等 强剩余磁异常带的转折端、梯度带,视电阻率低阻区及中低阻梯度带,深部存在团块状视磁化率高值区;剖面上矿体位于“左低右高,上高下低”的视电阻率梯度带上,呈中低阻、低阻特征及强磁场区至弱磁场区的视磁化率梯度带上,呈浅部“上高下低”、深部“下高上低”的中等 弱磁特征;空间上矿体位于鸡心沟断裂东侧的断裂构造低阻带与岩体高阻异常带的梯度带。五龙金矿地质地球物理找矿标志的建立和深部高视磁化率异常区的存在,表明矿区深部1000~2000m空间与五龙金矿体视电阻率、视磁化率特征相似的地段,仍具有较好找矿潜力。  相似文献   
14.
现代金矿勘察主要是通过综合地球化学和地质测量等数字化方法对深部矿床进行研究,所需要的人力物力成本较高。而通过分析积累的金矿规格单元数据,可以建立金矿成矿情况与相关成矿元素含量之间的非线性关系,从已有的勘查数据中寻找金矿成矿的一般规律。本文基于与金矿相关的成矿元素含量数据,分别采用逻辑斯蒂回归、随机森林和决策树方法对原始数据和重采样数据进行训练,综合运用召回率、精确率和准确率对模型进行评价。通过对比发现,在训练和测试原始数据过程中,由于每组之间数据量的巨大差距,导致成矿数据被淹没;而在训练重采样数据过程中,随机森林在召回率和准确率方面均有较好的表现,分别达到了90.63%和70.78%;并最终分析了随机森林模型中不同分类边界对于金矿成矿情况预测结果的影响。利用不同的测量指标对模型进行评价分析,使模型更适用于金矿成矿预测,可有效地提高金矿勘察的效率。  相似文献   
15.
洪东铭  简星  黄鑫  张巍  马金戈 《地学前缘》2020,27(3):191-201
石榴石是沉积物中常见的重矿物,其可来源于多种岩石,而且不同类型母岩中石榴石具有多样的地球化学组成,因此碎屑石榴石的地球化学分析在沉积物源研究中应用广泛。通过电子探针分析可以容易地获得单颗粒碎屑石榴石的主量元素地球化学组成,可借此探讨其母岩类型,但也存在一定的局限性,比如中酸性火成岩和部分变沉积岩来源的石榴石通常都具有高Fe、Mn的特征,不易于区分。本文系统地收集了不同岩石类型的石榴石微量元素数据,尝试利用微量元素地球化学的差异性对碎屑石榴石物源分析进行补充。最终得出以下结论:(1)石榴石的稀土元素(REE)组成与钇(Y)元素指标可区分中酸性火成岩和变沉积岩来源的碎屑石榴石;(2)基性岩(橄榄岩、辉石岩)及所对应的变基性岩石(榴辉岩)中石榴石的微量元素地球化学组成相近,但部分橄榄岩来源的石榴石在镨/钬(PrN/HoN)值和重稀土总量(ΣHREE含量)上与辉石岩和榴辉岩的有显著差别,这一特点可运用于以基性岩母岩为主的碎屑沉积物源研究中;(3)夕卡岩中的石榴石在主量元素地球化学组成上表现为高度一致的高Ca特征,而稀土元素组成具有两种典型的分配模式,岩浆型(指示富铁、氧化环境)与热液型(指示富铝、还原环境)。综上所述,石榴石微量元素地球化学可以有效地运用于沉积物源分析研究中,是其主量元素物源分析方法的重要补充。  相似文献   
16.
将多期切叠河道砂体归类合并,建立一个“垂向连续,横向联通的表外砂岩空间体”(其中砂岩间夹层厚度≤0.4 m)的自然层概念来控制多期河道复合切叠厚砂体。以北一匹断东萄一组1-4小层为例,利用自然层间砂体厚度、切叠程度、测井曲线形态、相叠加类型及砂体叠加期次将自然层分为5类;再依据砂体间切叠位置、切叠程度和切叠形态的差异建立自然层剖面表征方法;依据砂体叠加期次,建立自然层在平面上表征模式。  相似文献   
17.
李阳  邹灏  刘行  蒋修未  李蝶 《岩矿测试》2020,39(2):300-310
近年来激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)应用于单个流体包裹体成分定量分析已成为研究流体包裹体的最佳手段之一。该实验过程和数据处理比较复杂,目前国内外采用的数据分析软件为一款基于MATLAB的SILLS软件,该软件主要是对矿物(锆石)、流体包裹体以及熔体包裹体LA-ICP-MS分析结果进行处理。本文以萤石流体包裹体LA-ICP-MS分析为例,阐述了样品制备与流体包裹体的优选方法,对流体包裹体片厚度以及单个流体包裹体的选取要求作了详细描述,对仪器参数设置、内外标样选取和剥蚀方法等进行了说明。基于SILLS软件采用尖峰消除的方法对待处理数据进行校正,对不同种类型的波峰进行峰宽的选取。在元素比值校正和等效盐度计算过程中,由于被测样品是萤石,Ca元素具有较高的背景值,选择以Na作为流体包裹体的内标元素,以Ca作为寄主矿物的内标元素对寄主矿物浓度进行计算,同时提出以电价平衡代替质量平衡进行等效盐度计算。以上方案提高了LA-ICP-MS分析单个萤石流体包裹体的准确性,有助于解释成矿流体来源和矿床成因等问题。  相似文献   
18.
在巢湖西北半湖近岸带设置大型围隔研究秋季连续打捞蓝藻对湖泊温室气体通量的影响,应用YL-1000型大型仿生式水面蓝藻清除设备进行原位打捞蓝藻,通过便携式温室气体分析仪-静态箱法对大型围隔内水-气界面CH4、CO2通量特征及其影响因素进行观测.结果表明:对比未打捞区,蓝藻连续打捞下打捞区水体中叶绿素a(Chl.a)、悬浮物(SS)浓度不断下降,两者削减率分别为72%、85%,Chl.a、SS浓度分别下降到29.6±2.5 μg/L、12.5±1.2 mg/L,打捞对围隔内颗粒态物质去除效果十分明显;打捞过程中水体溶解性有机物(DOM)中微生物代谢类腐殖质(C1)、类蛋白(C3)显著下降趋势,打捞区C1、C3组分(0.18±0.02、0.06±0.01 RU)强度明显低于未打捞区(0.26±0.05、0.12±0.03 RU),打捞能有效控制藻源性溶解性有机质释放.同时,打捞区水-气界面CH4通量呈显著下降趋势,未打捞区CH4通量平均值(17.473±1.514 nmol/(m2·s))为打捞区(7.004±4.163 nmol/(m2·s))近2倍,CH4通量与Chl.a、C1、C3组分均呈显著正相关,水体中藻源性溶解态有机质对CH4通量具有促进作用;打捞区CO2释放通量呈显著上升趋势,打捞区CO2吸收通量(-0.200±0.069 μmol/(m2·s))明显低于未打捞区(-0.344±0.017 μmol/(m2·s)),CO2通量与Chl.a、温度均呈显著负相关.秋季打捞对CH4、CO2综合日平均通量减排量值为0.275±0.076 mol/(m2·d)(以CO2当量计).研究结果揭示了巢湖秋季连续打捞蓝藻过程对水-气界面温室气体具有显著减排作用,且能在一定程度上减缓蓝藻水华与湖泊富营养化、气候变暖之间的恶性循环,为湖泊碳循环和蓝藻水华灾害防控提供科学数据支撑和理论参考.  相似文献   
19.
谢伟  温守钦  唐铁乔  马鹏程 《地质学报》2020,94(5):1482-1504
大兴安岭广泛分布与岩浆热液作用有关的铅锌多金属矿床,对于该类型矿床中成矿物质的运移沉淀机制和矿物共生组合的研究是揭示成矿机制的关键。本文选取了大兴安岭成矿带东珺典型中高温岩浆热液型铅锌银矿床,通过对该矿床进行详细的野外地质调查和镜下矿物共生组合的研究,结合流体包裹体的显微测温研究,激光拉曼测试和H-O同位素测试,选择了方铅矿、闪锌矿和黄铁矿三种主要金属硫化物进行了热力学平衡的相关计算,依据包裹体显微测温结果选取了473K、513K、553K、593K四个温度截面绘制了热力学Eh-pH、lg[Pb~(2+)]-pH和lg[HS~-]-pH相图。结果显示随着热液成矿过程的不断演化,主要金属硫化物及其共生组合由Py(Ⅰ)→Py(Ⅱ)+Gn(Ⅰ)+Sp(Ⅰ)→Gn(Ⅰ)+Sp(Ⅰ)→Gn(Ⅰ)+Sp(Ⅱ)→Gn(Ⅱ)+Sp(Ⅱ)→Gn(Ⅱ)。流体沸腾、流体混合和水岩反应是东珺铅锌银矿床的主要成矿机制,由此引发的温度、离子活度、Eh和pH的变化对于成矿物质的运移沉淀和硫化物共生组合的形成具有重要的控制作用,东珺矿床热液成矿期主要金属硫化物及其共生组合的形成是多因素协同作用的结果。此研究对于解释大兴安岭典型热液型铅锌多金属矿床的运移沉淀机制和矿物共生组合特征具有重要的指导意义。  相似文献   
20.
北山造山带中部(甘肃段)花岗岩成因及构造背景   总被引:2,自引:2,他引:0  
白荣龙  刘显凡  周慧玲 《岩石学报》2020,36(6):1731-1754
北山造山带中部花岗岩体以陶勒努图洪岩体和跃进山南岩体为代表,本文对这两个岩体进行了LA-ICP-MS锆石U-Pb定年、全岩地球化学和原位锆石Lu-Hf同位素分析,结果表明:岩体成岩年龄分别为410±2. 8Ma、427±2. 5Ma;主量元素呈现高硅、高钾钙碱性、准铝质-弱过铝质特征;微量元素表现为富集Th、Zr、Hf等及大离子亲石元素(Rb、U、K等),亏损Ba、Sr、Eu及高场强元素(Nb、Ta、P、Ti等);球粒陨石标准化稀土元素曲线呈轻稀土富集、重稀土亏损的右倾模式。综合分析认为跃进山南岩体属A型花岗岩,陶勒努图洪岩体属S型花岗岩。陶勒努图洪和跃进山岩体锆石ε_(Hf)(t)分别为-2. 90~-0. 12(平均值为-1. 53)、-1. 99~2. 82(平均值为0. 26),t_(DM2)分别为1. 41~1. 58Ga、1. 23~1. 54Ga。研究表明:陶勒努图洪黑云母花岗闪长岩岩浆源区主要为由元古界北山杂岩组成的以变质杂砂岩为主的古老地壳物质(含中基性岩石)部分熔融的产物,跃进山南二长花岗岩体可能在元古界北山杂岩组成的以变质杂砂岩为主的古老地壳物质重熔过程中有幔源岩浆的参与。在中志留世(427Ma)明水-小黄山洋已向南侧马鬃山-公婆泉弧之下俯冲至后期,板块后撤引发明水-旱山地体南缘弧后形成裂解环境导致幔源岩浆底侵,诱发地壳物质重熔形成花岗质岩浆,岩浆侵位形成跃进山南二长花岗岩体;至早泥盆世(410Ma),俯冲结束发生弧-陆碰撞造山导致地壳增厚,引发下地壳发生部分熔融产生的花岗质岩浆侵位形成陶勒努图洪岩体;两岩体是在早、晚古生代交接时段同一俯冲-碰撞构造背景下不同部位、不同亚构造环境下的产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号