首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6669篇
  免费   312篇
  国内免费   25篇
测绘学   201篇
大气科学   585篇
地球物理   1561篇
地质学   3038篇
海洋学   244篇
天文学   895篇
综合类   15篇
自然地理   467篇
  2023年   37篇
  2022年   16篇
  2021年   59篇
  2020年   129篇
  2019年   79篇
  2018年   207篇
  2017年   304篇
  2016年   322篇
  2015年   224篇
  2014年   284篇
  2013年   445篇
  2012年   249篇
  2011年   369篇
  2010年   265篇
  2009年   394篇
  2008年   302篇
  2007年   381篇
  2006年   287篇
  2005年   314篇
  2004年   241篇
  2003年   239篇
  2002年   195篇
  2001年   177篇
  2000年   130篇
  1999年   233篇
  1998年   99篇
  1997年   78篇
  1996年   77篇
  1995年   55篇
  1994年   62篇
  1993年   61篇
  1992年   58篇
  1991年   34篇
  1990年   44篇
  1989年   48篇
  1988年   24篇
  1987年   34篇
  1986年   40篇
  1985年   24篇
  1984年   41篇
  1983年   21篇
  1982年   37篇
  1981年   34篇
  1980年   37篇
  1979年   33篇
  1978年   28篇
  1977年   16篇
  1976年   26篇
  1974年   19篇
  1973年   31篇
排序方式: 共有7006条查询结果,搜索用时 31 毫秒
21.
In scientific communication, ambiguities in term usage can go unnoticed due not only to the distance between reader and writer but also to the existence of highly specialized scientific subcommunities. This commentary therefore aims at raising awareness about the use of terms that have different meanings within different hydrological subcommunities such as field hydrology, hydrological modelling, or statistical hydrology. To do so, we discuss the use of the following commonly used hydrological terms: sample, runoff, discharge, and streamflow. We performed three types of analyses to provide evidence of term usage and understanding, including both qualitative and quantitative approaches: a drawing exercise, a survey, and a literature corpus analysis. These analyses allow for a comparison of spontaneous definitions and the actual use of these terms in scientific publications. Our various information sources revealed that the dialogue between hydrologists within and across subdisciplines is substantially influenced by personal conceptualizations of terms that are not always shared across conversational partners. The terms discussed and illustrated in this commentary have to be seen as a small sample used to demonstrate the need for a thoughtful use of hydrological terms when communicating research, not only to a general audience but even across subdisciplines within hydrology.  相似文献   
22.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   
23.
Convolutional neural networks can provide a potential framework to characterize groundwater storage from seismic data. Estimation of key components, such as the amount of groundwater stored in an aquifer and delineate water table level, from active-source seismic data are performed in this study. The data to train, validate and test the neural networks are obtained by solving wave propagation in a coupled poroviscoelastic–elastic media. A discontinuous Galerkin method is applied to model wave propagation, whereas a deep convolutional neural network is used for the parameter estimation problem. In the numerical experiment, the primary unknowns estimated are the amount of stored groundwater and water table level, while the remaining parameters, assumed to be of less of interest, are marginalized in the convolutional neural network-based solution. Results, obtained through synthetic data, illustrate the potential of deep learning methods to extract additional aquifer information from seismic data, which otherwise would be impossible based on a set of reflection seismic sections or velocity tomograms.  相似文献   
24.
Groundwater depletion is arguably one of humanity's greatest sustainability challenges of the 21st century. With Sustainable Development Goals only a decade away, water authorities around the world are in the urgent need for concrete and targeted measures to ensure that communities adhere to groundwater management policies as rapidly and as effectively as possible. In this paper, we combine computational social science, groundwater modelling and empirical data from the World Values Survey to generate future ensembles of hydro-social trajectories under alternative courses of management and social action or inaction. Our simulations shed new light on the role that cultural values can play in shaping the societal trajectories and norms that emerge when resources are either allocated or not sufficiently allocated to monitor compliance, issue fines, engage community leaders, and deter rule-breakers. This study presents a new approach to explore and evaluate the capacity of existing and future management actions to steer groundwater systems towards sustainable trajectories, to forecast the celerity and timing of social transformations at the inter-decadal scale, and to help nations identify the most pertinent management options under institutional, political, social, and/or cultural constraints. The methods presented here are broadly applicable to support strategic decisions that rely on the monitoring, enforcement, and compliance of environmental regulations.  相似文献   
25.
26.
Extreme erosion events can produce large short-term sediment fluxes. Such events complicate erosion rates estimated from cosmogenic nuclide concentrations in river sediment by providing sediment with a concentration different from the long-term basin average. We present a detrital 10Be study in southern Taiwan, with multiple samples obtained in a time sequence bracketing the 2009 Typhoon Morakot, to assess the impact of landslide sediment on 10Be concentrations (N10Be) in river sediment. Sediment samples were collected from 13 major basins, two or three times over the last decade, to observe the temporal variation of N10Be. Landslide inventories with time intervals of 5–6 years were used to quantify sediment flux changes. A negative correlation between N10Be and landslide areal density indicates dilution of N10Be by landslide sediment. Denudation rates estimated from the diluted N10Be can be up to three times higher than the lowest rate derived from the same basins. Observed increases imply that, 3 years after the passage of Typhoon Morakot, fluvial channels still contain a considerable amount of sediment provided by hillslope landslides during the event. However, higher N10Be in 2016 samples indicate that the contribution from landslide sediment at the sampled grain size has decreased with time. The correlation between changes in N10Be and landslide area and volume is not strong, likely resulting from the stochastic and complex nature of sediment transport. To simultaneously evaluate the volume of landslide-derived sediment and estimate the background denudation rate, associated with less impulsive sediment supply, we constructed a sediment-mixing model with the time series of N10Be and landslide inventories. The spatial pattern of background erosion rate in southern Taiwan is consistent with the regional tectonic framework, indicating that the landscape is evolving mainly in response to the tectonic forcing, and this signal is modified, but not obscured by impulsive sediment supply. © 2019 John Wiley & Sons, Ltd.  相似文献   
27.
Contaminants that entered the streambed during previous surface water pollution events can be released to the stream, causing secondary pollution of the stream and impacting its eco-environmental condition. By means of laboratory experiments and numerical simulations, we investigated density effects on the release of solute from periodic bedforms. The results show that solute release from the upper streambed is driven by bedform-induced convection, and that density effects generally inhibit the solute release from the lower streambed. Density gradients modify the pore water flow patterns and form circulating flows in the area of lower streambed. The formation of circulating flows is affected by density gradients associated with the solute concentration and horizontal pressure gradients induced by stream slope. The circulating flows near the bottom of the streambed enhance mixing of the hyporheic zone and the ambient flow zone.  相似文献   
28.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
29.
Fluid injection–induced tensile opening is modeled using an extended finite volume method (XFVM). An embedded fracture strategy is used for the flow problem, that is, the fractures are discretized using finite volume segments without resolving the grid around them. Further, the discontinuities across fractures are modeled using special basis functions. The fracture openings due to enhanced fluid pressure and the associated shear slip due to traction free boundary condition on the fracture segments are both modeled using these special discontinuity basis functions. Mass transfer between fractures and matrix is modeled using the pressure difference. The enhancement of fracture storativity due to tensile opening leads to stronger coupling between flow and mechanics. An iterative scheme relying on the fixed-stress approach for fractures, which conserves the stress dependent terms over each iteration of the flow problem, has been introduced. Tensile opening has been simulated for single fractures embedded in two- and three-dimensional matrices. The convergence criterion for sequentially implicit fixed-stress scheme for fractures embedded in elastic media is established and has been validated numerically. Further, for 2D simulations, the effect of the matrix permeability for fracture propagation due to tensile opening has been studied.  相似文献   
30.
The Eocene-Miocene Mianeh-Hashtroud igneous district in NW Iran is part of the Turkish–Caucasus–Iranian collision zone, a key region to decipher the assembly and differentiation of Gondwana-derived terranes along the Alpine-Himalayan convergence zone. Major inherited tectonic structures control in space and time the Mesozoic-Cenozoic transition from oceanic subduction to continental collision in the region. The geology of the study area is dominated by a polyphase, long-lived magmatic activity, spanning from ~45 to ~6 Ma. The igneous products are subalkaline to alkaline, with intermediate to acid compositions and a high-K calcalkaline to shoshonitic affinity. Evidence of crustal contamination is attested by inherited zircons in the oldest (Eocene-Oligocene) samples, with ages spanning from Neo-Archean to Paleocene. The Sr-Nd isotopic compositions of the Eocene-Oligocene samples plot close to the Bulk Silicate Earth estimate, whereas the Miocene samples document stronger crustal contamination. The lack of correlation between Nd-Sr isotopes and SiO2 supports a scenario of magma differentiation of different magma batches rather than crustal contamination. Major oxide and Sr-Nd isotopic variation lead us to suggest that magmatism is the consequence of re-melting of earlier underplated (Mesozoic-Tertiary) magmatic products, controlled by amphibole-dominated fractionation processes. Regional scale correlations show long-lived Cenozoic magmatism in NW Iran and Caucasus region, where the main porphyry and epithermal deposits occur. We propose that the Cenozoic collisional magmatism and the associated mineralisation at the junction between NW-Iran and Caucasus was controlled by the activity of a major, lithosphere-scale inherited boundary, transverse to the convergence zone. In such a geodynamic setting, the along-strike segmentation of the lithosphere slab generated asthenospheric melts, their upwelling into the metasomatised supra-subduction mantle wedge and the potential activation of different mantle and crustal sources, with consequent mineral endowment in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号