首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   25篇
  国内免费   39篇
地球物理   14篇
地质学   199篇
海洋学   69篇
天文学   2篇
综合类   5篇
自然地理   3篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   2篇
  2017年   24篇
  2016年   14篇
  2015年   14篇
  2014年   14篇
  2013年   13篇
  2012年   16篇
  2011年   16篇
  2010年   21篇
  2009年   18篇
  2008年   10篇
  2007年   20篇
  2006年   25篇
  2005年   9篇
  2004年   11篇
  2003年   8篇
  2002年   8篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
51.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   
52.
内蒙古科尔康油田沙海组储集层的岩石学特征   总被引:1,自引:0,他引:1  
根据碎屑岩铸体薄片和扫描电镜观察分析资料,研究了科尔康油田沙海组储集层的岩石学特征。科尔康油田沙海组储集层的岩石类型主要为岩屑砂岩和岩屑砂砾岩。碎屑岩的岩性特征对沙海组储集层的成岩作用具有显著的影响作用。  相似文献   
53.
以鲁西隆起区奥陶系碳酸盐岩沉积旋回与不整合面分析为基础, 应用薄片、铸体和阴极发光等室内分析技术, 对其成岩作用、成岩序列、孔隙演化及其特征进行了详细研究。研究区的成岩作用分为两类: 建设性成岩作用和破坏性成岩作用, 前者包括白云石化、压溶、去石膏化、溶蚀和破裂等作用; 后者以重结晶、胶结、压实、硅化和充填作用为主。奥陶系碳酸盐岩经历了多期次和多种类型的成岩作用演化, 与马家沟组相比, 三山子组多经历了一次其沉积后的短期表生和随后的埋藏作用。三山子组白云岩、马家沟组东黄山段、土峪段和阁庄段粉细晶白云岩以及八陡段不整合面以下的溶蚀角砾岩段发育次生孔洞缝系统, 是较为有利的储集层段。  相似文献   
54.
The Malbunka copper deposit, located about 220 km west of Alice Springs, in the Northern Territory of Australia, may be a rare example of primary formation of copper carbonate mineralization. This deposit consists of unusual azurite disks up to 25 cm diameter, and lesser amounts of secondary azurite crystals and malachite. Carbon isotope values of the copper carbonate minerals are consistent with formation from groundwater-dissolved inorganic carbon. Oxygen isotope thermometry formation temperature estimates are 5–16 °C above ambient temperatures, suggesting the copper carbonates formed at a depth between 0.3 and 1.6 km in the Amadeus Basin. Azurite fluid inclusion waters are rich in boron, chlorine, and other elements suggestive of dilute oil basin formation fluids. In addition, presence of euhedral tourmaline with strong chemical zonation suggest that this was a low temperature diagenetic setting. The strong correlation of structures associated with hydraulic fracturing and rich copper carbonate mineralization suggest a strongly compartmentalized overpressure environment. It is proposed that copper carbonates of the Malbunka deposit formed when deep, copper-rich formation fluids were released upward by overpressure-induced failure of basin sediments, permitting mixing with carbonate-rich fluids above. This work bears directly upon exploration for a new type of primary copper deposit, through understanding of the conditions of genesis.  相似文献   
55.
This paper analyses the diagenetic evolution of sandstones belonging to the Bajo Barreal Formation (Cretaceous) in the Golfo de San Jorge Basin (Patagonia, Argentina). The Bajo Barreal Formation includes the main reservoirs, which are located along the western area of the basin and is composed of sandstones, conglomerates, mudstones, tuffaceous mudstones and some layers of tuffs. The principal reservoirs comprise medium-to coarse-grained sandstones, which are dominated by feldspathic litharenites and contain minor amounts of litharenites and lithic arkoses. The authigenic minerals include kaolinite, smectite, chlorite, quartz overgrowths, microquartz and calcite, with minor proportions of megaquartz, siderite, analcime, laumontite, feldspar overgrowths and illite/smectite and chlorite/smectite mixed layers. Secondary porosity is much more important than primary porosity and is produced by the dissolution of feldspar, lithic clasts and clay cements. The diagenetic history of the Bajo Barreal sandstones can be divided into seven diagenetic stages, each of which is characterized by a specific assemblage of authigenic minerals and diagenetic processes. Eogenetic conditions occur in stages 1, 2, 3 and 4. Stage 1 corresponds to shallow burial characterized by the physical reduction of primary porosity by compaction; during stage 2, rim clay cements of chlorite, smectite and clinoptilolite, as well as thin quartz overgrowths, were formed. The precipitation of pore-filling cements of kaolinite, chlorite and smectite occurred during stage 3, while stage 4 records the intense dissolution of feldspar, lithic fragments and kaolinite cements. Mesogenesis occurs in diagenetic stages 5 and 6. The former corresponds to a new phase of authigenic kaolinite, while the latter records the significant dissolution of feldspar, lithic clasts and previous cements, which produced the highest values of secondary porosity. Finally, stage 7 corresponds to the highest degree of diagenesis in the Bajo Barreal Formation (mesogenesis), which resulted in the precipitation of cements of zeolites and calcite, as well as quartz and plagioclase overgrowths.  相似文献   
56.
Upper Carboniferous sandstones make one of the most important tight gas reservoirs in Central Europe. This study integrates a variety of geothermometers (chlorite thermometry, fluid inclusion microthermometry and vitrinite reflection measurements) to characterize a thermal anomaly in a reservoir outcrop analog (Piesberg quarry, Lower Saxony Basin), which is assumed responsible for high temperatures of circa 300 °C, deteriorating reservoir quality entirely. The tight gas siliciclastics were overprinted with temperatures approximately 90–120 °C higher compared to outcropping rocks of a similar stratigraphic position some 15 km to the west. The local temperature increase can be explained by circulating hydrothermal fluids along the fault damage zone of a large NNW-SSE striking fault with a displacement of up to 600 m in the east of the quarry, laterally heating up the entire exposed tight gas sandstones. The km-scale lateral extent of this fault-bound thermal anomaly is evidenced by vitrinite reflectance measurements of meta-anthracite coals (VRrot ∼ 4.66) and the temperature-related diagenetic overprint. Data suggest that this thermal event and the associated highest coalification was reached prior to peak subsidence during Late Jurassic rifting (162 Ma) based on K-Ar dating of the <2 μm fraction of the tight gas sandstones. Associated stable isotope data from fluid inclusions, hosted in a first fracture filling quartz generation (T ∼ 250 °C) close to lithostatic fluid pressure (P ∼ 1000 bars), together with authigenic chlorite growth in mineralized extension fractures, demonstrate that coalification was not subject to significant changes during ongoing burial. This is further evidenced by the biaxial reflectance anisotropy of meta-anthracite coals. A second event of quartz vein formation occurred at lower temperatures (T ∼ 180 °C) and lower (hydrostatic) pressure conditions (P ∼ 400 bars) and can be related to basin inversion. This second quartz generation might be associated with a second event of illite growth and K-Ar ages of 96.5–106.7 Ma derived from the <0.2 μm fraction of the tight gas sandstones.This study demonstrates the exploration risk of fault-bound thermal anomalies by deteriorating entirely the reservoir quality of tight gas sandstones with respect to porosity and permeability due to the cementation with temperature-related authigenic cements. It documents that peak temperatures are not necessarily associated with peak subsidence. Consequently, these phenomena need to be considered in petroleum system models to avoid, for example, overestimates of burial depth and reservoir quality.  相似文献   
57.
In the Great South Basin, within the Eocene section, at time-depths around 700–900 ms two way time below the seafloor, unusual features are observed on 3D seismic data closely associated with polygonal faults. The features, referred to as honeycomb structures (HS), cover an area of ∼600 km2, are packed circular, oval, to polygonal depressions 150–400 m across in plan view and several to 10 + m in amplitude. Polygonal faults rapidly die out at the Marshall Paraconformity, which is overlain by the Oligocene Penrod Formation. Hence the polygonal faults are inferred to have formed prior to the Marshall Paraconformity, and they cross-cut HS features. Consequently the top of the HS probably formed at burial depths of around 375–500 m, which is their decompacted depth below the paraconformity. The interval containing HS is about 125 m vertical thick. There are several possible origins for the HS. The most probable is related to bulk contraction of the sediment volume accompanied by fluid expulsion, which suggests a diagenetic origin, in particular the opal-A/CT transition. There are actually two polygonal fault systems (PFS) present in the area. The Southern Tier 1 PFS lies laterally to the HS and overlaps with it. The Northern PFS (Tier 2) lies above the HS, appears to be independent of the HS, and formed in the upper 200–300 m of the sediment column. The Tier 1 PFS probably formed by shear failure related to the same diagenetic effects that caused the HS.  相似文献   
58.
Halokinesis causes a dynamic structural evolution with the development of faults and fractures, which can act as either preferential fluid pathways or barriers. Reconstructing reactive fluid flow in salt dome settings remains a challenge. This contribution presents for the first time a spatial distribution map of diagenetic phases in a salt dome in northern Oman. Our study establishes a clear link between structural evolution and fluid flow leading to the formation of diagenetic products (barite and calcite) in the salt dome roof strata. Extensive formation of diagenetic products occurs along NNE-SSW to NE-SW faults and fractures, which initiated during the Santonian (Late Cretaceous) and were reactivated in the Miocene, but not along the E-W fault, which was generated during Early Paleocene time. We propose that the diagenetic products formed by mixing of a warm (100 °C) saline (17 wt% NaCl eq.) 87Sr enriched (87Sr/86Sr: 0.71023) fluid with colder (35 °C) meteoric fluid during Miocene to Pleistocene. The stable sulphur and strontium isotope composition and fluid inclusion data indicate that a saline fluid, with sulphate source derived from the Ara Group evaporite and Haima Supergroup layers, is the source for barite formation at about 100 °C, predominantly at fault conjunctions and minor faults away from the main graben structure in the dome. In the Miocene, the saline fluid probably ascended along a halokinesis-related fault due to fluid overpressure (due to the rising salt and impermeable layers in the overlying stratigraphic sequence), and triggered the formation of barite due to mixing with barium-rich fluids, accompanied by a drop in temperature. Subsequently, evolving salt doming with associated fault activity and erosion of the Jebel allows progressively more input of colder meteoric fluids, which mix with the saline warmer fluid, as derived from stable isotope data measured in the progressively younger barite-associated calcite, fault zone calcite and macro-columnar calcite. The reconstructed mixing model indicates a 50/50 to 90/10 meteoric/saline fluid mixing ratio for the formation of fault zone calcite, and a 10 times higher concentration of carbon in the saline fluid end member compared to the meteoric fluid end member. The presented mixing model of salt-derived fluids with meteoric fluids is suggested to be a general model applicable to structural diagenetic evolution of salt domes world wide.  相似文献   
59.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   
60.
黄芮 《云南地质》2013,(4):447-452,462
马厂箐斑岩体与铜、钼、金等多金属矿成矿关系密切.斑岩体微量元素与稀土元素显示斑岩体物质来源具有壳幔混合特征.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号