首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   86篇
  国内免费   19篇
测绘学   74篇
大气科学   26篇
地球物理   368篇
地质学   64篇
海洋学   3篇
综合类   11篇
自然地理   16篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   14篇
  2019年   37篇
  2018年   22篇
  2017年   26篇
  2016年   24篇
  2015年   26篇
  2014年   39篇
  2013年   29篇
  2012年   22篇
  2011年   32篇
  2010年   26篇
  2009年   28篇
  2008年   15篇
  2007年   36篇
  2006年   29篇
  2005年   21篇
  2004年   22篇
  2003年   19篇
  2002年   8篇
  2001年   17篇
  2000年   5篇
  1999年   15篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1993年   4篇
  1992年   3篇
  1990年   1篇
排序方式: 共有562条查询结果,搜索用时 31 毫秒
51.
2013年四川芦山7.0级地震烈度遥感评估   总被引:10,自引:0,他引:10       下载免费PDF全文
2013年4月20日四川芦山MS7.0级地震发生后,在灾区应急获取了多种高分辨率航空和无人机遥感影像,并快速解译提取了灾区建筑物震害信息.采用地震烈度遥感定量评估方法,利用2008年汶川8.0级地震等震后震害遥感解译和现场调查研究确定的经验震害遥感定量评估模型,获得了芦山地震灾区126个主要居民点的地震烈度遥感评估结果,并据此圈画了地震烈度分布遥感评估图.结果显示,本次地震Ⅸ度区面积约150km2,Ⅷ度区面积约900km2.该结果在第一时间(4月21日晚)提供给了中国地震局地震现场应急指挥部.对比分析显示,地震烈度遥感快速评估结果与中国地震局4月25日公布的地震烈度图,以及与笔者在现场实地进行的建筑物震害详细调查结果基础上评定的地震烈度具有较高的一致性.表明强烈地震发生后,借助于快速获取的灾区高分辨率遥感影像,可以快速估计地震烈度分布,对地震灾区灾情估计和抗震救灾工作具有十分重要的参考意义.  相似文献   
52.
In the present study the combined influence of seismic orientation and a number of parameters characterizing the structural system of Reinforced Concrete (R/C) buildings on the level of expected damages are examined. For the purposes of the above investigation eight medium‐rise buildings are designed on the basis of the current seismic codes. The structural characteristics examined are the ratio of the base shear received by the structural walls, the ratio of horizontal stiffness in two orthogonal directions and the structural eccentricity. Then, the buildings are analyzed by nonlinear time response analysis using 100 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes, forming 72 different angles with the structural axes. The structural damage is expressed in terms of the Park and Ang damage index. The results of the analyses revealed that the damage level of the buildings is strongly affected by the incident angle of the ground motion. The extent at which the orientation of the seismic records influences the damage response depends on the structural system and the distance of the record to the fault rupture. As a consequence, the common practice of applying the earthquake records along the structural axes can lead to significant underestimation of structural damage. Also, it was shown that the structural eccentricity can significantly differentiate the seismic damage level, as well as the impact of the earthquake orientation on the structural damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
53.
The current formulation of Eurocode 8 Part 3 and the Italian building code for the seismic assessment of existing buildings accounts for epistemic (knowledge‐based) uncertainties by means of the identification of knowledge levels with associated values of the so‐called confidence factors, applied only as a reduction of material strengths. This formulation does not always produce consistent results and it does not explicitly account for other sources of uncertainty. The paper proposes a probabilistic methodology for the quantification of appropriately defined factors, allowing consideration of the different sources of uncertainty involved in the seismic assessment of masonry buildings by means of nonlinear static analyses. This simple approach, also including an alternative formulation of the confidence factors related with material properties, allows to obtain results which are consistent with the acquired level of knowledge and correctly account for the different sources of uncertainty without requiring to carry out any stochastic nonlinear analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
54.
A 54‐story steel, perimeter‐frame building in downtown Los Angeles, California, is identified by a wave method using records of the Northridge earthquake of 1994 (ML = 6.4, R = 32 km). The building is represented as a layered shear beam and a torsional shaft, characterized by the corresponding velocities of vertically propagating waves through the structure. The previously introduced waveform inversion algorithm is applied, which fits in the least squares sense pulses in low‐pass filtered impulse response functions computed at different stories. This paper demonstrates that layered shear beam and torsional shaft models are valid for this building, within bands that include the first five modes of vibration for each of the North–South (NS), East–West (EW), and torsional responses (0–1.7 Hz for NS and EW, and 0–3.5 Hz for the torsional response). The observed pulse travel time from ground floor to penthouse level is τ ≈1.5 s for NS and EW and τ ≈ 0.9 s for the torsional responses. The identified equivalent uniform shear beam wave velocities are βeq ≈ 140 m/s for NS and EW responses, and 260 m/s for torsion, and the apparent Q ≈ 25 for the NS and torsional, and ≈14 for the EW response. Across the layers, the wave velocity varied 90–170 m/s for the NS, 80–180 m/s for the EW, and 170–350 m/s for the torsional responses. The identification method is intended for use in structural health monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
55.
The dynamic identification of a historical masonry palace located in Benevento (Italy) has been carried out. The case study is representative of many buildings located in historic Italian centres. Since the building has been instrumented by the Department of Civil Protection with a permanent dynamic monitoring system, some of the recorded data, acquired in various operating conditions have been analysed with basic instruments of the Operational Modal Analysis in order to identify the main eingenfrequencies and vibration modes of the structure. The experimental results have been compared to the numerical outcomes provided by a detailed three-dimensional Finite Element (FE) model of the building where Soil–Structure Interaction (SSI) has been taken into account. The comparison of experimental vs. numerical frequencies and vibration modes of the palace evidenced the role exerted by the subsoil on the dynamic response of the building.  相似文献   
56.
In this study,dynamic responses of two buildings connected by viscoelastic dampers under bidirectional excitations are extensively investigated.The two buildings are a 10-story building and a 16-story building,with the shorter building on the left.Viscoelastic dampers are installed at all fl oors of the shorter building.Equations of motion are formulated using a fractional derivative model to represent the viscoelastic dampers.Three cases are considered with mass eccentricities at 0,10% and-10% with respect to the dimensions of the buildings.The responses of the buildings are numerically predicted at different damper properties.The simulation results indicated that the maximum horizontal responses of the buildings without eccentricities are signifi cantly mitigated.However,torsional effects are adversely increased.For asymmetric buildings,the effectiveness of the connecting dampers is affected by building eccentricities.As a result,mass eccentricities must be taken into account in damper selection.When compared with vibrations induced by unidirectional excitations,bidirectional excitations can increase the responses of coupled asymmetric buildings.In addition,installing dampers only at the top fl oor of the shorter building may cause a sudden change in lateral stiffness of the taller building.Consequently,the story shear envelopes of the taller building are changed.  相似文献   
57.
Most current seismic design includes the nonlinear response of a structure through a response reduction factor(R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modern seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual ‘R' value for engineered design/construction of reinforced concrete(RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.  相似文献   
58.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure.  相似文献   
59.
60.
使用偏心支撑减小不规则高层建筑的扭转振动效应   总被引:7,自引:0,他引:7  
文章对比分析了一个不规则高层钢筋混凝土框-剪结构和在原结构基础上增设偏心支撑后的新结构的抗震性能,比较了它们的自振特性以及层间位移等地震作用效应。针对不规则高层建筑在地震作用下不可避免的扭转振动问题,提出在结构中适当地增设偏心支撑来减小结构的扭转振动效应及其它结构地震反应这种简单可行、经济适用的方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号