首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2490篇
  免费   146篇
  国内免费   31篇
测绘学   88篇
大气科学   289篇
地球物理   631篇
地质学   765篇
海洋学   214篇
天文学   351篇
综合类   6篇
自然地理   323篇
  2022年   13篇
  2021年   48篇
  2020年   59篇
  2019年   53篇
  2018年   66篇
  2017年   80篇
  2016年   106篇
  2015年   88篇
  2014年   97篇
  2013年   182篇
  2012年   117篇
  2011年   156篇
  2010年   119篇
  2009年   140篇
  2008年   141篇
  2007年   139篇
  2006年   132篇
  2005年   108篇
  2004年   91篇
  2003年   92篇
  2002年   81篇
  2001年   51篇
  2000年   45篇
  1999年   34篇
  1998年   30篇
  1997年   26篇
  1996年   28篇
  1995年   30篇
  1994年   17篇
  1993年   19篇
  1992年   12篇
  1991年   15篇
  1990年   15篇
  1989年   27篇
  1988年   10篇
  1987年   20篇
  1986年   11篇
  1985年   22篇
  1984年   14篇
  1983年   14篇
  1982年   12篇
  1981年   18篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   8篇
  1972年   5篇
排序方式: 共有2667条查询结果,搜索用时 203 毫秒
1.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
2.
ABSTRACT

The importance of including a contextual underpinning to the spatial analysis of social data is gaining traction in the spatial science community. The challenge, though, is how to capture these data in a rigorous manner that is translational. One method that has shown promise in achieving this aim is the spatial video geonarrative (SVG), and in this paper we pose questions that advance the science of geonarratives through a case study of criminal ex-offenders. Eleven ex-offenders provided sketch maps and SVGs identifying high-crime areas of their community. Wordmapper software was used to map and classify the SVG content; its spatial filter extension was used for hot spot mapping with statistical significance tested using Monte Carlo simulations. Then, each subject’s sketch map and SVG were compared. Results reveal that SVGs consistently produce finer spatial-scale data and more locations of relevance than the sketch maps. SVGs also provide explanation of spatial-temporal processes and causal mechanisms linked to specific places, which are not evident in the sketch maps. SVG can be a rigorous translational method for collecting data on the geographic context of many phenomena. Therefore, this paper makes an important advance in understanding how environmentally immersive methods contribute to the understanding of geographic context.  相似文献   
3.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
4.
The mineralogy and geochemistry of Ceres, as constrained by Dawn's instruments, are broadly consistent with a carbonaceous chondrite (CM/CI) bulk composition. Differences explainable by Ceres’s more advanced alteration include the formation of Mg‐rich serpentine and ammoniated clay; a greater proportion of carbonate and lesser organic matter; amounts of magnetite, sulfide, and carbon that could act as spectral darkening agents; and partial fractionation of water ice and silicates in the interior and regolith. Ceres is not spectrally unique, but is similar to a few other C‐class asteroids, which may also have suffered extensive alteration. All these bodies are among the largest carbonaceous chondrite asteroids, and they orbit in the same part of the Main Belt. Thus, the degree of alteration is apparently related to the size of the body. Although the ammonia now incorporated into clay likely condensed in the outer nebula, we cannot presently determine whether Ceres itself formed in the outer solar system and migrated inward or was assembled within the Main Belt, along with other carbonaceous chondrite bodies.  相似文献   
5.
An assessment of the multibeam sonar data of the central Western Continental Margins of India has been carried out to evaluate the seafloor geomorphology and processes by examining the geomorphological attributes e.g., slope, sediments, structures, etc. associated with geomorphic features. The variation in relief and the features located in the region have been mapped and interpreted collectively by utilizing several geospatial mapping tools. The backscatter strength across the area, apparently congruent with the local relief, has helped to examine the sediment movement on the seafloor. The prominent features found in the region include faults, pockmarks, mounds, submarine terraces, and submerged fossil reefs. Several areas with varying topography engender comparable fractal dimension at short scale breaks, and the probability density functions (PDFs) utilizing backscatter data depicting overlapping classes. The present study highlights how fractals and scale break parameters can be utilized to determine the seafloor processes and associated sedimentological dynamics in a complex geographical environment with strong bottom currents, seasonal upwelling, and faulted structure. The role and impact of the various geomorphic processes on the reworking of sediment movement and the overall progression of the seafloor morphology has been revealed for the first time in this part of the ocean bottom.  相似文献   
6.
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological characteristics of this near‐surface glacial weathering crust, we describe the design and operation of a capacitance‐based piezometer that enables rapid, economical deployment across multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctuations. Piezometers were employed at 10 northern hemisphere glaciers, and through the application of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003 to 3.519 m day?1, with a mean of 0.185 ± 0.019 m day?1. These results are comparable to those obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated positively with water table height but negatively with altitude and cumulative short‐wave radiation since the last synoptic period of either negative air temperatures or turbulent energy flux dominance. The large range of K observed suggests complex interactions between meteorological influences and differences arising from variability in ice structure and crystallography. Our data demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and support the notion that the weathering crust can regulate the supraglacial discharge response to melt production. The conductivities reported here, coupled with typical supraglacial channel spacing, suggest that meltwater can be retained within the weathering crust for at least several days. Not only does this have implications for the accuracy of predictive meltwater run‐off models, but we also argue for biogeochemical processes and transfers that are strongly conditioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes, and nutrients to downstream ecosystems. Because continued atmospheric warming will incur rising snowline elevations and glacier thinning, the supraglacial hydrological system may assume greater importance in many mountainous regions, and consequently, detailing weathering crust hydraulics represents a research priority because the flow path it represents remains poorly constrained.  相似文献   
7.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   
8.
The accurate measurement of suspended sediment (<200 μm) in aquatic environments is essential to understand and effectively manage changes to sediment, nutrient, and contaminant concentrations on both temporal and spatial scales. Commonly used sampling techniques for suspended sediment either lack the ability to accurately measure sediment concentration (e.g., passive sediment samplers) or are too expensive to deploy in sufficient number to provide landscape‐scale information (e.g., automated discrete samplers). Here, we evaluate a time‐integrated suspended sediment sampling technique, the pumped active suspended sediment (PASS) sampler, which collects a sample that can be used for the accurate measurement of time‐weighted average (TWA) suspended sediment concentration and sediment particle size distribution. The sampler was evaluated against an established passive time‐integrated suspended sediment sampling technique (i.e., Phillips sampler) and the standard discrete sampling method (i.e., manual discrete sampling). The PASS sampler collected a sample representative of TWA suspended sediment concentration and particle size distribution of a control sediment under laboratory conditions. Field application of the PASS sampler showed that it collected a representative TWA suspended sediment concentration and particle size distribution during high flow events in an urban stream. The particle size distribution of sediment collected by the PASS and Phillips samplers were comparable and the TWA suspended sediment concentration of the samples collected using the PASS and discrete sampling techniques agreed well, differing by only 4% and 6% for two different high flow events. We should note that the current configuration of the PASS sampler does not provide a flow‐weighted measurement and, therefore, is not suitable for the determination of sediment loads. The PASS sampler is a simple, inexpensive, and robust in situ sampling technique for the accurate measurement of TWA suspended sediment concentration and particle size distribution.  相似文献   
9.
10.
Analyses (n = 525) of chloride (Cl), bromide (Br), nitrate as nitrogen (NO3-N), sodium (Na+), calcium (Ca2+) and potassium (K+) in stream water, tile-drain water and groundwater were conducted in an urban-agricultural watershed (10% urban/impervious, 87% agriculture) to explore potential differences in the signature of Cl originating from an urban source as compared with an agricultural source. Only during winter recharge events did measured Cl concentrations exceed the 230 mg/L chronic threshold. At base flow, nearly all surface water and tile water samples had Cl concentrations above the calculated background threshold of 18 mg/L. Mann–Whitney U tests revealed ratios of Cl to Br (p = .045), to NO3-N (p < .0001), to Ca2+ (p < .0001), and to Na+ (p < .0001) to be significantly different between urban and agricultural waters. While Cl ratios indicate that road salt was the dominant source of Cl in the watershed, potassium chloride fertilizer contributed as an important secondary source. Deicing in watersheds where urban land use is minimal had a profound impact on Cl dynamics; however, agricultural practices contributed Cl year-round, elevating stream base flow Cl concentrations above the background level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号