首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   50篇
  国内免费   6篇
测绘学   17篇
大气科学   92篇
地球物理   236篇
地质学   449篇
海洋学   60篇
天文学   108篇
综合类   4篇
自然地理   52篇
  2023年   4篇
  2022年   4篇
  2021年   15篇
  2020年   20篇
  2019年   17篇
  2018年   25篇
  2017年   35篇
  2016年   25篇
  2015年   40篇
  2014年   41篇
  2013年   61篇
  2012年   51篇
  2011年   60篇
  2010年   70篇
  2009年   59篇
  2008年   54篇
  2007年   47篇
  2006年   46篇
  2005年   51篇
  2004年   44篇
  2003年   31篇
  2002年   32篇
  2001年   21篇
  2000年   14篇
  1999年   8篇
  1998年   12篇
  1997年   11篇
  1996年   12篇
  1995年   15篇
  1994年   2篇
  1993年   13篇
  1992年   4篇
  1991年   4篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   12篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1969年   2篇
排序方式: 共有1018条查询结果,搜索用时 250 毫秒
1.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
2.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   
3.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
4.
Variscan shear zones in the Armorican Massif represent sites of strong fluid‐rock interaction. The hydrogen isotope composition of muscovite (δDMs) from syntectonic leucogranite allows to determine the source of fluids that infiltrated the footwall of three detachment zones and the South Armorican Shear Zone. Using temperatures of hydrogen isotope exchange estimated from microstructural data, we calculate the hydrogen isotope ratios of water (δDwater) present within the shear zones during high‐temperature deformation. A ~40‰ difference in δDwater values from deep to shallow crustal level reveals a mixing relationship between deep crustal fluids with higher δD values that range from ?34 to ?33‰, and meteoric fluids with δD values as low as ?74‰ in the upper part of detachment footwalls.  相似文献   
5.
Natural Resources Research - Geological contacts in lateritic metal deposits (footwall topographies) often delineate the orebody boundaries. Spatial variations seen in such contacts are frequently...  相似文献   
6.
7.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
8.
The purpose of this study is to estimate long-term SMC and find its relation with soil moisture (SM) of climate station in different depths and NDVI for the growing season. The study area is located in agricultural regions in the North of Mongolia. The Pearson’s correlation methodology was used in this study. We used MODIS and SPOT satellite data and 14 years data for precipitation, temperature and SMC of 38 climate stations. The estimated SMC from this methodology were compared with SM from climate data and NDVI. The estimated SMC was compared with SM of climate stations at a 10-cm depth (r2 = 0.58) and at a 50-cm depth (r2 = 0.38), respectively. From the analysis, it can be seen that the previous month’s SMC affects vegetation growth of the following month, especially from May to August. The methodology can be an advantageous indicator for taking further environmental analysis in the region.  相似文献   
9.
Major pathways of biogenic carbon (C) flow are resolved for the planktonic food web of the flaw lead polynya system of the Amundsen Gulf (southeast Beaufort Sea, Arctic Ocean) in spring-summer 2008. This period was relevant to study the effect of climate change on Arctic marine ecosystems as it was characterized by unusually low ice cover and warm sea surface temperature. Our synthesis relied on a mass balance estimate of gross primary production (GPP) of 52.5 ± 12.5 g C m−2 calculated using the drawdown of nitrate and dissolved inorganic C, and a seasonal f-ratio of 0.64. Based on chlorophyll a biomass, we estimated that GPP was dominated by phytoplankton (93.6%) over ice algae (6.4%) and by large cells (>5 μm, 67.6%) over small cells (<5 μm, 32.4%). Ancillary in situ data on bacterial production, zooplankton biomass and respiration, herbivory, bacterivory, vertical particle fluxes, pools of particulate and dissolved organic carbon (POC, DOC), net community production (NCP), as well as selected variables from the literature were used to evaluate the fate of size-fractionated GPP in the ecosystem. The structure and functioning of the planktonic food web was elucidated through inverse analysis using the mean GPP and the 95% confidence limits of every other field measurement as lower and upper constraints. The model computed a net primary production of 49.2 g C m−2, which was directly channeled toward dominant calanoid copepods (i.e. Calanus hyperboreus 20%, Calanus glacialis 10%, and Metridia longa 10%), other mesozooplankton (12%), microzooplankton (14%), detrital POC (18%), and DOC (16%). Bacteria required 29.9 g C m−2, a demand met entirely by the DOC derived from local biological activities. The ultimate C outflow comprised respiration fluxes (82% of the initial GPP), a small sedimentation (3%), and a modest residual C flow (15%) resulting from NCP, dilution and accumulation. The sinking C flux at the model limit depth (395 m) supplied 60% of the estimated benthic C demand (2.8 g C m−2), suggesting that the benthos relied partly on other C sources within the bottom boundary layer to fuel its activity. In summary, our results illustrate that the ongoing decline in Arctic sea ice promotes the growth of pelagic communities in the Amundsen Gulf, which benefited from a ∼80% increase in GPP in spring-summer 2008 when compared to 2004 – a year of average ice conditions and relatively low GPP. However, 53% of the secondary production was generated within the microbial food web, the net ecological efficiency of zooplankton populations was not particularly high (13.4%), and the quantity of biogenic C available for trophic export remained low (6.6 g C m−2). Hence it is unlikely that the increase in lower food web productivity, such as the one observed in our study, could support new harvestable fishery resources in the offshore Beaufort Sea domain.  相似文献   
10.
A dense seismic reflection survey with up to 250-m line-spacing has been conducted in a 15 × 15 km wide area offshore southwestern Taiwan where Bottom Simulating Reflector is highly concentrated and geochemical signals for the presence of gas hydrate are strong. A complex interplay between north–south trending thrust faults and northwest–southeast oblique ramps exists in this region, leading to the formation of 3 plunging anticlines arranged in a relay pattern. Landward in the slope basin, a north–south trending diapiric fold, accompanied by bright reflections and numerous diffractions on the seismic profiles, extends across the entire survey area. This fold is bounded to the west by a minor east-verging back-thrust and assumes a symmetric shape, except at the northern and southern edges of this area, where it actively overrides the anticlines along a west-verging thrust, forming a duplex structure. A clear BSR is observed along 67% of the acquired profiles. The BSR is almost continuous in the slope basin but poorly imaged near the crest of the anticlines. Local geothermal gradient values estimated from BSR sub-bottom depths are low along the western limb and crest of the anticlines ranging from 40 to 50 °C/km, increase toward 50–60 °C/km in the slope basin and 55–65 °C/km along the diapiric fold, and reach maximum values of 70 °C/km at the southern tip of the Good Weather Ridge. Furthermore, the local dips of BSR and sedimentary strata that crosscut the BSR at intersections of any 2 seismic profiles have been computed. The stratigraphic dips indicated a dominant east–west shortening in the study area, but strata near the crest of the plunging anticlines generally strike to southwest almost perpendicular to the direction of plate convergence. The intensity of the estimated bedding-guided fluid and gas flux into the hydrate stability zone is weaker than 2 in the slope basin and the south-central half of the diapiric fold, increases to 7 in the northern half of the diapiric fold and plunging anticlines, and reaches a maximum of 16 at the western frontal thrust system. Rapid sedimentation, active tectonics and fluid migration paths with significant dissolved gas content impact on the mechanism for BSR formation and gas hydrate accumulation. As we begin to integrate the results from these studies, we are able to outline the regional variations, and discuss the importance of structural controls in the mechanisms leading to the gas hydrate emplacements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号