首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   8篇
地球物理   12篇
地质学   4篇
海洋学   1篇
  2020年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2012年   2篇
  2009年   1篇
排序方式: 共有17条查询结果,搜索用时 13 毫秒
1.
Modelling uncertainty can significantly affect the structural seismic reliability assessment. However, the limit state excursion due to this type of uncertainty may not be described by a Poisson process as it lacks renewal properties with the occurrence of each earthquake event. Furthermore, considering uncertainties related to ground motion representation by employing recorded ground motions together with modelling uncertainties is not a trivial task. Robust fragility assessment, proposed previously by the authors, employs the structural response to recorded ground motion as data in order to update prescribed seismic fragility models. Robust fragility can be extremely efficient for considering also the structural modelling uncertainties by creating a dataset of one-to-one assignments of structural model realizations and as-recorded ground motions. This can reduce the computational effort by more than 1 order of magnitude. However, it should be kept in mind that the fragility concept itself is based on the underlying assumption of Poisson-type renewal. Using the concept of updated robust reliability, considering both the uncertainty in ground motion representation based on as-recorded ground motion and non ergodic modelling uncertainties, the error introduced through structural reliability assessment by using the robust fragility is quantified. It is shown through specific application to an existing RC frame that this error is quite small when the product of the time interval and the standard deviation of failure rate is small and is on the conservative side.  相似文献   
2.

The pre-hospital emergency staff played a key role in transferring the injured patients to health centers. Usually, they reported changes in their decisions on the transfer of non-traumatic patients to hospitals. So, this study was aimed to explore the reasons for unnecessarily requesting an ambulance by non-traumatic patients after the acute responding-to-earthquake phase. This study was a qualitative study that data were analyzed by content analysis approach. Participants were eleven pre-hospital emergency technicians. Data were collected by three sessions of focus group discussion. Data analysis was led to emergence of a main theme: “feeling urgency due to turmoil and uncertainty.” This theme illustrates the basic approach of the inhabitants of the earthquake-stricken region when unnecessarily requesting an ambulance. This theme was derived from two main categories of “turbulent and uncertain conditions” and “psychological turmoil.” The category of “turbulent and uncertain conditions” was comprised of three subcategories: “unreliable care,” “inadequate facilities” and “turbulent living conditions.” The category of “psychological turmoil” was comprised of three subcategories: “psychological turmoil in survivors,” “healthcare providers deciding under pressure” and “turmoil in providing psychological and psychiatric services.” Ambulance dispatch may be unnecessarily performed owing to turbulent and unsure conditions and psychological turmoil in earthquake-stricken people and pre-hospital emergency staff. Providing earthquake-stricken people with psycho-medical services in their place of residence can significantly reduce the workload of pre-hospital emergency staff and consequently that of hospital staff and therefore save time and treatment costs and increase the quality of health services provided for the injured.

  相似文献   
3.
Effective impervious area for runoff in urban watersheds   总被引:2,自引:0,他引:2       下载免费PDF全文
Effective impervious area (EIA), or the portion of total impervious area (TIA) that is hydraulically connected to the storm sewer system, is an important parameter in determining actual urban runoff. EIA has implications in watershed hydrology, water quality, environment, and ecosystem services. The overall goal of this study is to evaluate the application of successive weighted least square (WLS) method to urban catchments with different sizes and various hydrologic conditions to determine EIA fraction. Other objectives are to develop insights on the data selection issues, EIA fraction, EIA/TIA ratio, and runoff source area patterns in urban catchments. The successive WLS method is applied to 50 urban catchments with different sizes from less than 1 ha to more than 2000 ha in Minnesota, Wisconsin, Texas, USA as well as Europe, Canada, and Australia. The average, median, and standard deviation of EIA fractions for the 42 catchments with residential land uses are found to be 0.222, 0.200, and 0.113, respectively. These values for the EIA/TIA ratio in the same 42 catchments are 0.50, 0.48, and 0.21, respectively. While the EIA/TIA results indicate the importance of EIA, 95% prediction interval of the mean EIA/TIA is found to be 0.07 to 0.93, which shows that using an average value for this ratio in each land use to determine EIA from TIA in ungauged urban watersheds can be misleading. The successive WLS method was robust and is recommended for determining EIA in gauged urban catchments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
Knowledge of the effective impervious area (EIA) or the degree to which impervious surfaces are hydraulically connected to the drainage system is useful for improving hydrological and environmental models and assessing the effectiveness of green stormwater infrastructure in urban watersheds. The goal of this research is to develop a method to estimate EIA fraction in urban watersheds using readily available data. Since EIA is dependent on rainfall–runoff response and cannot be solely determined based on the physical characteristics of a watershed, the EIA is linked with the asymptotic curve number (CN), a watershed index that represents runoff characteristics. In order for the method to be applicable to ungauged watersheds, the asymptotic CN is predicted using land cover and soil data from 35 urban catchments in Minnesota and Texas, USA. Similar data from 11 other urban catchments in Wisconsin and Texas, USA, are used to validate the results. A set of runoff depth versus EIA fraction curves is also developed to assess the impact of EIA reduction on discharge from an urban watershed in land-use planning studies.  相似文献   
5.
A full‐scale five‐story reinforced concrete building was built and tested on the NEES‐UCSD shake table during the period from May 2011 to May 2012. The purpose of this test program was to study the response of the structure and nonstructural components and systems (NCSs) and their dynamic interaction during seismic base excitation of different intensities. The building specimen was tested first under a base‐isolated condition and then under a fixed‐based condition. As the building was being erected, an accelerometer array was deployed on the specimen to study the evolution of its modal parameters during the construction process and placement of major NCSs. A sequence of dynamic tests, including daily ambient vibration, shock (free vibration) and forced vibration tests (low‐amplitude white noise and seismic base excitations), were performed on the building at different stages of construction. Different state‐of‐the‐art system identification methods, including three output‐only and two input‐output methods, were used to estimate the modal properties of the building. The obtained results allow to investigate in detail the effects of the construction process and NCSs on the dynamic parameters of this building system and to compare the modal properties obtained from different methods, as well as the performance of these methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Infiltration is the primary mechanism in green stormwater infrastructure (GSI) systems to reduce the runoff volume from urbanized areas. Soil hydraulic conductivity is most important in influencing GSI infiltration rates. Saturated hydraulic conductivity (Ksat) is a critical parameter for GSI design and post-construction performance. However, Ksat measurement in the field is problematic due to temporal and spatial variability and measurement errors. This review paper focuses on a comparison of methods for in-situ Ksat measurement and the causes of temporal and spatial variations of Ksat within GSI systems. Automated infiltration testing methods, such as the Modified Philip–Dunne (MPD) and SATURO infiltrometers, show promise for efficient Ksat measurements. Soil Ksat values can change over time and substantially vary throughout a GSI, which can be attributed to multiple factors, including but not limited to temperature changes, soil composition and properties, soil compaction level, plant root morphology and distribution, biological and macrofauna activities in the soil, inflow sediment characteristics, quality of infiltrating water, and measurement errors. There is evidence that infiltration rates in vegetated urban GSI systems are sustained given an appropriate GSI design, reasonable concentration of suspended sediments in the inflow runoff, and routine maintenance procedures. These observations indicate that clogging can be counteracted by processes that tend to increase the soil hydraulic conductivity (e.g., plant root and biological activities). This self-sustainability underlines that infiltration-based GSI systems are a reliable long-term stormwater management solution. Recommendations on how to incorporate the temporal changes of Ksat in GSI design and on obtaining a spatially-representative Ksat for the GSI design are presented.  相似文献   
8.
9.
Operative seismic aftershock risk forecasting can be particularly useful for rapid decision‐making in the presence of an ongoing sequence. In such a context, limit state first‐excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance‐based framework for adaptive aftershock risk assessment in the immediate post‐mainshock environment. A time‐dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event‐dependent fragility curves as a function of the first‐mode spectral acceleration for a prescribed limit state is calculated by employing back‐to‐back nonlinear dynamic analyses. An epidemic‐type aftershock sequence model is employed for estimating the spatio‐temporal evolution of aftershocks. The event‐dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic‐type aftershock sequence aftershock hazard. The daily probability of limit state first‐excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the number of aftershocks. As a numerical example, daily aftershock risk is calculated for the L'Aquila 2009 aftershock sequence (central Italy). A representative three‐story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first‐excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
It is desirable that nonlinear dynamic analyses for structural fragility assessment are performed using unscaled ground motions. The widespread use of a simple dynamic analysis procedure known as Cloud Analysis, which uses unscaled records and linear regression, has been impeded by its alleged inaccuracies. This paper investigates fragility assessment based on Cloud Analysis by adopting, as the performance variable, a scalar demand to capacity ratio that is equal to unity at the onset of limit state. It is shown that the Cloud Analysis, performed based on a careful choice of records, leads to reasonable and efficient fragility estimates. There are 2 main rules to keep in mind for record selection: to make sure that a good portion of the records leads to a demand to capacity ratio greater than unity and that the dispersion in records' seismic intensity is considerable. An inevitable consequence of implementing these rules is that one often needs to deal with the so‐called collapse cases. To formally consider the collapse cases, a 5‐parameter fragility model is proposed that mixes the simple regression in the logarithmic scale with logistic regression. The joint distribution of fragility parameters can be obtained by adopting a Markov Chain Monte Carlo simulation scheme leading directly to the fragility and its confidence intervals. The resulting fragility curves compare reasonably with those obtained from the Incremental Dynamic Analysis and Multiple Stripe Analysis with (variable) conditional spectrum–compatible suites of records at different intensity levels for 3 older reinforced concrete frames with shear‐, shear‐flexure‐, and flexure‐dominant behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号