首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
大气科学   2篇
地球物理   2篇
地质学   11篇
综合类   2篇
自然地理   3篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Hao  Jiansheng  Zhang  Zhengtao  Li  Lanhai 《Landslides》2021,18(12):3845-3856
Landslides - Identifying and tracking the potential avalanche types is the first step toward characterizing an avalanche problem and a fundamental principle of effective avalanche risk management...  相似文献   
2.
刘洋  李兰海  杨金明  陈曦  张润 《遥感学报》2018,22(5):802-809
积雪深度是大量气候、水文、农业及生态模型的重要输入变量。选用欧空局Sentinel-1主动微波数据,利用合成孔径雷达SAR(Synthetic Aperture Radar)差分干涉测量技术的二轨法,根据积雪相位与雪深之间的转换关系,反演新疆天山中段的巴音布鲁克盆地典型区的积雪雪深分布,提出了基于InSAR二轨差分的雪深估计方法,反演得到2016年12月18日的空间分辨率为13.89 m的雪深分布。研究表明:(1)对Sentinel-1数据进行正确的预处理以后,可以应用SAR差分干涉测量技术的二轨法反演区域雪深分布。但由于像对相干性和积雪状态的差异,积雪深度超过10 cm,可以获取较准确的雪深反演结果,R=0.65,反演误差的均方根误差RMSE=4.52 cm,平均相对误差为22.42%,反演雪深结果均比实测结果略偏低;而当雪深小于10 cm时,雪深反演值较实测值存在较大的误差,相对误差均高于34.52%,且反演雪深值均比实测值偏高。(2)雪深反演精度受高程及实际雪深的差异影响显著,另外雪深反演精度也受限于干涉像对相干性。结果表明,对于获取区域积雪雪深,InSAR技术较光学及被动微波遥感具有非常广阔的应用前景。  相似文献   
3.
This paper tried to reconstruct the time series (TS) of monthly average temperature (MAT), monthly accumulated precipitation (MAP), and monthly accumulated runoff (MAR) during 1901–1960 in the Kaidu River Basin using the Delta method and the three-layered feed forward neural network with backpropagation algorithm (TLBP-FFNN) model. Uncertainties in the reconstruction of hydrometeorological parameters were also discussed. Available monthly observed hydrometeorological data covering the period 1961–2000 from the Kaidu River Basin, the monthly observed meteorological data from three stations in Central Asia, monthly grid climatic data from the Climatic Research Unit (CRU), and Coupled Model Intercomparison Project Phase 3 (CMIP3) dataset covering the period 1901–2000 were used for the reconstruction. It was found that the Delta method performed very well for calibrated and verified MAT in the Kaidu River Basin based on the monthly observed meteorological data from Central Asia, the monthly grid climatic data from CRU, and the CMIP3 dataset from 1961 to 2000. Although calibration and verification of MAP did not perform as well as MAT, MAP at Bayinbuluke station, an alpine meteorological station, showed a satisfactory result based on the data from CRU and CMIP3, indicating that the Delta method can be applied to reconstruct MAT in the Kaidu River Basin on the basis of the selected three data sources and MAP in the mountain area based on CRU and CMIP3. MAR at Dashankou station, a hydrological gauge station on the verge of the Tianshan Mountains, from 1961 to 2000 was well calibrated and verified using the TLBP-FFNN model with structure (8,1,1) by taking MAT and MAP of four meteorological stations from observation; CRU and CMIP3 data, respectively, as inputs; and the model was expanded to reconstruct TS during 1901–1960. While the characteristics of annual periodicity were depicted well by the TS of MAT, MAP, and MAR reconstructed over the target stations during the period 1901–1960, different high frequency signals were captured also. The annual average temperature (AAT) show a significant increasing trend during the 20th century, but annual accumulated precipitation (AAP) and annual accumulated runoff (AAR) do not. Although some uncertainties exist in the hydrometeorological reconstruction, this work should provide a viable reference for studying long-term change of climate and water resources as well as risk assessment of flood and drought in the Kaidu River Basin, a region of fast economic development.  相似文献   
4.
http://www.sciencedirect.com/science/article/pii/S1674987111000405   总被引:1,自引:0,他引:1  
This study has focused on the processes of soil degradation and chemical element concentration in tea-growing regions of Rwanda, Africa. Soil degradation accelerated by erosion is caused not only by topography but also by human activities. This soil degradation involves both the physical loss and reduction in the amount of topsoil associated with nutrient decline. Soil samples were collected from eleven tropical zones in Rwanda and from variable depth within each collecting site. Of these, Samples from three locations in each zone were analyzed in the laboratory, with the result that the pH of all soil samples is shown to be less than 5 (pH < 5) with a general average of 4.4. The elements such as iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) are present in high concentration levels. In contrast calcium (Ca) and sodium (Na) are present at low-level concentrations and carbon (C) was found in minimal concentrations. In addition, elements derived from fertilizers, such as nitrogen (N), phosphorous (P), and potassium (K) which is also from minerals such as feldspar, are also present in low-level concentrations. The results indicate that the soil in certain Rwandan tea plantations is acidic and that this level of pH may help explain, in addition to natural factors, the deficiency of some elements such as Ca, Mg, P and N. The use of chemical fertilizers, land use system and the location of fields relative to household plots are also considered to help explain why tea plantation soils are typically degraded.  相似文献   
5.
基于2000 - 2014年新疆伊犁地区不同海拔区域观测的冻融期内的冻土、 积雪和气象数据, 应用相关性分析和回归分析方法, 分析该地区季节冻土沿海拔的分布规律, 以及气温、 积雪对季节冻土特征的影响。结果表明: 伊犁地区表层土壤存在着每年11月份开始结冻, 于次年4月份完全融化的周期性变化。每个周期内土壤冻结时长随海拔以4 d·(100m)-1的趋势增加, 土壤最大冻结深度随海拔以3.9 cm·(100m)-1的趋势增加。土壤冻结时长与冻结期的平均气温具有显著负相关关系, 相关系数为-0.98(P<0.05)。土壤冻结日数与积雪覆盖历时呈正相关关系, 土壤的最大冻结深度与最大雪深呈负相关关系。随着海拔升高, 温度递减, 导致伊犁地区土壤最大冻结深度和土壤冻结日数整体呈现增加趋势。但在海拔相对较高的地区, 由于相对较厚积雪的影响, 出现土壤最大冻结深度随海拔升高而减小的反常现象。研究结果可为新疆伊犁地区季节冻土的分布对气候变化的响应研究提供支持, 帮助研究区域生态规划和水资源管理, 为农业发展制定适应气候变化对策。  相似文献   
6.
The main goal of this study was to assess the long-term impacts of global warming perturbation on water resources of the Kaidu River Basin in Northwest China. Temperature, precipitation and hydrology data during the past 29 years from 1979 to 2007 were collected and analyzed using parametric and non-parametric methods, the connection between temperature and precipitation by the combination of grey correlation analysis method and the hypothesis testing for trend of climate change. The results show a high inc...  相似文献   
7.
Investigation on Snow Characteristics and Their Distribution in China   总被引:3,自引:3,他引:0  
The background, scientific objective, investigation contents and scheme of project “Investigation on snow characteristics and their distribution in China” was introduced in this paper. The general objective of the investigation is to build comprehensive and systematic database of snow characteristics in China, at the service of providing data for the climate change, water resource and snow disaster studies. The investigation will be performed on the three fields including the compilation of historical data, in situ measurement of snow characteristics in the typical regions, and investigation of snow characteristics using remote sensing methods. For the compilation of historical data, the historical snow data from the meteorological stations and research institutes will be firstly collected, and then they will be compiled based on a standard rule. In situ observation will be performed at point, line and area-scale on the typical regions which include Northeast region, Xinjiang Degion, and Qinghai-Tibet Plateau. The observation content will contain snow depth, snow density, snow water equivalent, snow particle shape, hardness of snowpack surface, liquid water content, grain size, snow temperature, snow/soil temperature, dielectric constant, and some chemical parameters. These snow characteristics are the priority information used for the modification of retrieval algorithm on snow parameters. Remote sensing methods will be used to build long-time series of snow cover, snow albedo and snow water equivalent datasets based on these modified algorithms. Finally, the snow characteristics from both in situ and remote sensing investigation will be used to classify snow types in China, and produce distribution maps of snow characteristic and other thematic maps.  相似文献   
8.
代兰海  薛东前 《干旱区地理》2022,45(4):1302-1312
旅游地感知是旅游地理学重要的研究领域之一,“一带一路”倡议背景下,游客空间感知与地方想象研究对推动边疆生态旅游地品牌化建设,促进边疆“去边缘化”和旅游发展具有重要的理论和现实意义。以额济纳绿洲为例,综合集成内容分析法、社会网络分析法、文本分析法与社会访谈法,探讨了边疆生态旅游地游客空间感知意象特征与地方想象建构过程。结果表明:(1) 绿洲景观生态与自然风貌是生态旅游地空间感知中最主要的部分,其中,胡杨林在游客空间感知意象网络中居于核心位置,胡杨符号成为游客审美和消费偏好。(2) K-核分析发现,胡杨要素贯穿所有凝聚子群层次变化过程,胡杨景观及其延伸的社会文化意义是游客重点关注的内容。随着K-核级数增加,游客由着重关注绿洲胡杨森林景观向绿洲森林、地貌、水体等综合自然景观过渡,绿洲人文景观除黑城遗址和策克口岸外,其他较少受到游客青睐。(3) 基于边疆独特的景观符号、典型的地域符号和层累的文化符号,借助真实空间的具身体验和想象空间的文化建构,游客对额济纳绿洲展开丰富的生命想象、边塞想象与秘境想象,塑造出绿洲鲜明的地方意象。  相似文献   
9.
Field studies were carried out in Tarim River Basin, Northwest China for analysis of snowmelt model for flood forecast for a river in arid zone. Snow is a major source for water availability in arid zone of Northwest China where 50% of snow cover withdrew by sublimation during dry and cold climatic condition. The analysis of weekly forecast of daily discharges was helped by the temperature index model, ARIMA model for temperature and flow, D-IUH runoff model and D-IUH model estimation where the temperature forecast was used as driving variable; the numerical simulations were carried out using SUSA® software for testing the sensitivity of the D-IUH to the input values of the parameter and an analysis of the forecast results against the set of input parameters resulted in a determination coefficient R 2 = 0.5. The standard deviation was 3.28 and the mean for the Tarim River was 5.37 (mm d?1) implying that the forecasted data is in strong agreement with the observed data. The combination of methods is better useful for calculation in order to avoid errors of appreciation.  相似文献   
10.
针对流域内气象观测站点稀少和融雪径流过程的特点,利用APHRODITE降水数据进行插值,应用日有效活动温度改进度日数;依据季节性冻土受有效活动积温影响的特点,建立有效活动积温与径流系数的关系,提高模型中融雪速率和径流系数的计算精度。结合气象、水文资料和MODIS遥感积雪产品,应用改进的融雪径流模型(SRM)对开都河流域2000年与2006年融雪期的径流进行了率定和验证模拟。改进模型在率定期和验证期的模拟结果远远优于用日平均温度作为度日数的结果。结果表明,用APHRODITE降水数据及改进的度日数和径流系数作为SRM模型参数输入,能够较好模拟开都河流域融雪径流过程,大大提高模型模拟精度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号