首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1846篇
  免费   66篇
  国内免费   6篇
测绘学   57篇
大气科学   162篇
地球物理   456篇
地质学   497篇
海洋学   204篇
天文学   354篇
自然地理   188篇
  2021年   18篇
  2020年   21篇
  2019年   21篇
  2018年   22篇
  2017年   28篇
  2016年   47篇
  2015年   36篇
  2014年   46篇
  2013年   91篇
  2012年   47篇
  2011年   100篇
  2010年   67篇
  2009年   92篇
  2008年   73篇
  2007年   75篇
  2006年   96篇
  2005年   72篇
  2004年   81篇
  2003年   70篇
  2002年   65篇
  2001年   67篇
  2000年   43篇
  1999年   34篇
  1998年   35篇
  1997年   26篇
  1996年   28篇
  1995年   28篇
  1994年   35篇
  1993年   26篇
  1992年   31篇
  1991年   23篇
  1990年   27篇
  1989年   15篇
  1988年   21篇
  1987年   24篇
  1986年   17篇
  1985年   33篇
  1984年   27篇
  1983年   27篇
  1982年   22篇
  1981年   22篇
  1980年   13篇
  1979年   22篇
  1978年   13篇
  1977年   16篇
  1976年   8篇
  1975年   9篇
  1974年   8篇
  1973年   9篇
  1970年   6篇
排序方式: 共有1918条查询结果,搜索用时 31 毫秒
1.
Texturally complex monazite grains contained in two granulite-facies pelitic migmatites from southern Baffin Island, Arctic Canada, were mapped by laser ablation-inductively coupled plasma-mass spectrometry (using spot sizes ≤5 µm) to quantitatively determine the spatial variation in trace element chemistry (with up to 1,883 analyses per grain). The maps highlight the chemical complexity of monazite grains that have experienced multiple episodes of growth, resorption and chemical modification by dissolution–precipitation during high-grade metamorphism. Following detailed chemical characterization of monazite compositional zones, a related U–Pb data set is re-interpreted, allowing petrologically significant ages to be extracted from a continuum of concordant data. Synthesis of these data with pseudosection modelling of prograde and peak conditions allows for the temporal evolution of monazite trace element chemistry to be placed in the context of the evolving PT conditions and major phase assemblage. This approach enables a critical evaluation of three commonly used petrochronological indicators: linking Y to garnet abundance, the Eu anomaly to feldspar content and Th/U to anatectic processes. Europium anomalies and Th/U behave in a relatively systematic fashion, suggesting that they are reliable petrochronological witnesses. However, Y systematics are variable, both within domains interpreted to have grown in a single event, between grains interpreted to be part of the same age population, and between samples that experienced similar metamorphic conditions and mineral assemblages. These observations caution against generalized petrological interpretations on the basis of Y content, as it suggests Y concentrations in monazite are controlled by domainal equilibria. The results reveal a c. 45 Myr interval between prograde metamorphism and retrograde melt crystallization in the study area, emphasizing the long-lived nature of heat flow in high-grade metamorphic terranes. Such long timescales of metamorphism would be assisted by the growth, retention and dominance of high-Th suprasolidus monazite, as observed in this study, contributing to the radiogenic heating budget of mid- to lower-crustal environments. Careful characterization of monazite grains suggests that continuum-style U–Pb data sets can be decoded to provide insights into the duration of metamorphic processes.  相似文献   
2.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   
3.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
4.
Abstract

Increasing wolf populations are a concern for wildlife managers in the Midwestern U.S. Understanding the psychological mechanisms that contribute to public perceptions of risk will enable development of strategies that seek to mitigate these risks, and suggest where outreach efforts may facilitate acceptance of wolves. We examined the psychological factors that influence Illinois residents’ perceived risks from wolves. We hypothesized that individuals’ perceived risks from wolves were a function of their attitudes toward wolves, negative affect toward wolves, and basic beliefs about wildlife. Data were obtained from a survey of the Illinois public (n?=?784). Negative affect and attitudes toward wolves were direct predictors of perceived risks. Basic beliefs predicted attitudes and negative affect toward wolves. Negative affect predicted attitudes. Basic beliefs had direct and indirect effects on perceived risks.  相似文献   
5.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
River discharge and nutrient measurements are subject to aleatory and epistemic uncertainties. In this study, we present a novel method for estimating these uncertainties in colocated discharge and phosphorus (P) measurements. The “voting point”‐based method constrains the derived stage‐discharge rating curve both on the fit to available gaugings and to the catchment water balance. This helps reduce the uncertainty beyond the range of available gaugings and during out of bank situations. In the example presented here, for the top 5% of flows, uncertainties are shown to be 139% using a traditional power law fit, compared with 40% when using our updated “voting point” method. Furthermore, the method is extended to in situ and lab analysed nutrient concentration data pairings, with lower uncertainties (81%) shown for high concentrations (top 5%) than when a traditional regression is applied (102%). Overall, for both discharge and nutrient data, the method presented goes some way to accounting for epistemic uncertainties associated with nonstationary physical characteristics of the monitoring site.  相似文献   
8.
Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.  相似文献   
9.
The conservative nature of chloride (Cl?) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin‐wide scale. The creation of Cl? isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin‐wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross‐formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl? within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects.  相似文献   
10.
Enhanced production of unconventional hydrocarbons in the United States has driven interest in natural gas development globally, but simultaneously raised concerns regarding water quantity and quality impacts associated with hydrocarbon extraction. We conducted a pre‐development assessment of groundwater geochemistry in the critically water‐restricted Karoo Basin, South Africa. Twenty‐two springs and groundwater samples were analyzed for major dissolved ions, trace elements, water stable isotopes, strontium and boron isotopes, hydrocarbons and helium composition. The data revealed three end‐members: a deep, saline groundwater with a sodium‐chloride composition, an old, deep freshwater with a sodium‐bicarbonate‐chloride composition and a shallow, calcium‐bicarbonate freshwater. In a few cases, we identified direct mixing of the deep saline water and shallow groundwater. Stable water isotopes indicate that the shallow groundwater was controlled by evaporation in arid conditions, while the saline waters were diluted by apparently fossil meteoric water originated under wetter climatic conditions. These geochemical and isotopic data, in combination with elevated helium levels, suggest that exogenous fluids are the source of the saline groundwater and originated from remnant seawater prior to dilution by old meteoric water combined with further modification by water‐rock interactions. Samples with elevated methane concentrations (>14 ccSTP/kg) were strongly associated with the sodium‐chloride water located near dolerite intrusions, which likely provide a preferential pathway for vertical migration of deeply sourced hydrocarbon‐rich saline waters to the surface. This pre‐drill evaluation indicates that the natural migration of methane‐ and salt‐rich waters provides a source of geogenic contamination to shallow aquifers prior to shale gas development in the Karoo Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号